簡易檢索 / 詳目顯示

研究生: 柯智涵
Chih-Han Ko
論文名稱: 基於調頻輔助服務策略之儲能系統老化分析
Evaluating and Analyzing the Degradation of Battery Energy Storage System Based on AFC Control Strategies
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
Hong-Chan Chang
陳鴻誠
Hung-Cheng Chen
黃維澤
Wei-Tzer Huang
楊念哲
Nien-Che Yang
郭政謙
Cheng-Chien Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 84
中文關鍵詞: 電池儲能系統調頻輔助服務電池老化自動頻率控制
外文關鍵詞: battery energy storage system, frequency regulation service, battery degradation, automatic frequency control
相關次數: 點閱:378下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

電池儲能系統(battery energy storage system, BESS)之快速反應特性非常適合調頻輔助服務或即時備轉之應用。儲能系統之調頻輔助服務又能大致分為兩個大類別:動態調頻備轉(dynamic regulation, dReg)、靜態調頻備轉(static regulation, sReg),其中目前又包含三種不同的控制模式:dReg0.5、dReg0.25及sReg,由於響應曲線的不同,每一種控制模式對於相同的頻率,會有不同的輸出需求,相對的也會有不同的電池充電狀態(state of charge, SOC)曲線。
電池儲能系統的主要組成元件為電池,而鋰離子電池在長期的使用下,老化現象難以避免,其中老化表現又與電池使用情形與當前老化狀態有著極大的關聯。因此不同的調頻備轉模式、不同的充放電率(C-rate)與策略中不同的SOC目標準位,都會有不同的電池老化速度。本研究將基於相同的頻率,模擬不同的調頻備轉模式在不同C-rate與不同的電池SOC目標準位下相應的SOC曲線。其後將建置一個基於鋰鐵電池(LiFePO4 battery, LFP battery)老化公式與雨流計數演算法之電池老化模型,藉此分析不同使用情境下的SOC曲線,進一步探討各種不同情境下儲能系統之容量老化情形。
本研究主要的貢獻為:比較與分析不同調頻備轉模式下,C-rate與SOC目標準位對電池壽命的影響,並以台灣電力股份有限公司提供之輔助服務計費公式估算各情境截至電池EOL時的總利潤,扣除儲能系統建置成本,以電池壽命的觀點進行各種情境之淨收益比較,期能夠在規劃儲能案場設備規格及控制策略研製時,給予一些參考依據。


The fast response characteristics of a battery energy storage system (BESS) are very suitable for frequency regulation services or spinning reserve applications. Frequency regulation services can be classified into two main categories: dynamic regulation (dReg) and static regulation (sReg), which currently include three different control modes: dReg0.5, dReg0.25, and sReg. Based on the response curves, each control mode will have its output requirements for the same frequency and correspondingly will have different battery state of charge (SOC) curves.
The main component of BESS is batteries, and the degradation of lithium-ion batteries is inevitable under long-term use. The aging performance is closely related to the usage and current aging state; therefore, with different control modes, C-rates, and SOC targets in the strategy, the batteries will age with totally different speeds. This study will simulate the SOC curves of control modes under different C-rates and different battery SOC targets based on the same frequency series. Afterward, a battery aging model based on LFP battery aging formula and rainflow counting algorithm will be built to estimate the corresponding battery life by analyzing the SOC curve under different usage scenarios.
The main contributions of this study are comparison and analysis of the effects of C-rate and SOC target on battery lifetime under different control modes. Finally, this study will use the billing formula provided by Taipower to estimate the total profit of each scenario until the battery EOL, deduct the construction cost of the energy storage system, and compare the net income of various scenarios from the perspective of battery lifetime.

中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景與研究動機 1 1.2 文獻回顧 3 1.3 研究方法 4 1.4 章節摘要 5 第二章 再生能源和儲能系統介紹 7 2.1 再生能源簡介 7 2.2 輔助服務概述 8 2.3 電池儲能系統 11 2.4 調頻輔助服務 12 2.4.1 動態調頻備轉(dReg) 12 2.4.2 靜態調頻備轉(sReg) 14 第三章 鋰離子電池老化 16 3.1 鋰離子電池老化機制 16 3.2 日曆老化 17 3.3 循環老化 18 第四章 老化模型建立 20 4.1 老化模型架構 20 4.2 雨流計數法 20 4.3 特徵提取 25 4.4 老化疊加 27 4.4.1 直接疊加法的失敗 27 4.4.2 映射疊加法 28 第五章 模擬結果 31 5.1 模擬情境說明 31 5.2 頻率資料 33 5.3 各策略之SOC特徵分布 36 5.4 各情境之老化結果 46 5.5 利潤比較試算 57 第六章 結論與未來展望 67 6.1 結論 67 6.2 未來展望 68 參考文獻 69

[1] E. Reihani, M. Motalleb, R. Ghorbani, L. S. Saoud, “Load peak shaving and power smoothing of a distribution grid with high renewable energy penetration,” Renewable Energy, vol. 86, Feb. 2016.
[2] D. Krishnamurthy, C. Uckun, Z. Zhou, P. R. Thimmapuram, A. Botterud, “Energy Storage Arbitrage Under Day-Ahead and Real-Time Price Uncertainty,” in IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 84-93, Jan. 2018, DOI. 10.1109/TPWRS.2017.2685347.
[3] D. Mejía-Giraldo, G. Velásquez-Gomez, N. Muñoz-Galeano, J. B. Cano-Quintero, S. Lemos-Cano, “A BESS Sizing Strategy for Primary Frequency Regulation Support of Solar Photovoltaic Plants,” Energies 2019, 12(2), 317, Jan. 2019.
[4] S. Chen, T. Zhang, H. B. Gooi, R. D. Masiello and W. Katzenstein, “Penetration Rate and Effectiveness Studies of Aggregated BESS for Frequency Regulation,” in IEEE Trans. on Smart Grid, vol. 7, no. 1, pp. 167-177, Jan. 2016, DOI: 10.1109/TSG.2015.2426017.
[5] J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.-C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, “Ageing mechanisms in lithium-ion batteries,” Journal of Power Sources, vol. 147, Issues 1–2, 2005.
[6] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, D. Riu, “A review on lithium-ion battery ageing mechanisms and estimations for automotive applications,” Journal of Power Sources, vol. 241, 2013.
[7] W. Bögel, J. P. Büchel, H. Katz, “Real-life EV battery cycling on the test bench,” Journal of Power Sources, vol. 72, Issue 1, 1998.
[8] M. Kassem, J. Bernard, R. Revel, S. Pélissier, F. Duclaud, C. Delacourt, “Calendar aging of a graphite/LiFePO4 cell,” Journal of Power Sources, vol. 208, 2012.
[9] I Bloom, B. W. Cole, J. J. Sohn, S. A. Jones, E. G. Polzin, V. S. Battaglia, G. L. Henriksen, C. Motloch, R. Richardson, T. Unkelhaeuser, D. Ingersoll, H. L. Case, “An accelerated calendar and cycle life study of Li-ion cells,” Journal of Power Sources, vol. 101, Issue 2, 2001.
[10] P. Keil, S. F. Schuster, J. Wilhelm, J. Travi, A. Hauser, R. C. Karl, A. Jossen, “Calendar Aging of Lithium-Ion Batteries,” Journal of The Electrochemical Society, vol. 163, Number 9
[11] M. Kassem, J. Bernard, R. Revel, S. Pélissier, F. Duclaud, C. Delacourt, “Calendar aging of a graphite/LiFePO4 cell, Journal of Power Sources,” vol. 208, 2012.
[12] G. Sarre, P. Blanchard, M. Broussely, “Aging of lithium-ion batteries,” Journal of Power Sources, vol. 127, Issues 1–2, 2004.
[13] 台灣電力股份有限公司電力交易平台,https://etp.taipower.com.tw/
[14] 「日前輔助服務市場之交易商品規格」,台灣電力股份有限公司 電力調度處,2021年 08 月 10 日。
[15] D. Stroe, V. Knap, M. Swierczynski, A. Stroe, R. Teodorescu, “Operation of a Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation: A Battery Lifetime Perspective,” in IEEE Trans. on Industry Applications, vol. 53, no. 1, pp. 430-438, Jan.-Feb. 2017, DOI: 10.1109/TIA.2016.2616319.Regulation: A Battery Lifetime Perspective.
[16] C. Amzallag, J. P. Gerey, J. L. Robert, J. Bahuaud, “Standardization of the rainflow counting method for fatigue analysis,” International Journal of Fatigue, vol. 16, Issue 4, 1994.
[17] 「108/109年度全國電力資源供需報告」,經濟部,[Online] Available:https://www.moeaboe.gov.tw/ECW/populace/content/wHandMenuFile.ashx?menu_id=14406&file_id=8532。
[18] Q. Hou, N. Zhang, E. Du, M. Miao, F. Peng, C. Kang, “Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China,” Applied Energy, vol. 242, 2019.
[19] R. Hidalgo-León et al., “A survey of battery energy storage system (BESS), applications and environmental impacts in power systems,” 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), 2017, pp. 1-6, DOI: 10.1109/ETCM.2017.8247485.
[20] A. Oudalov, T. Buehler, D. Chartouni, “Utility Scale Applications of Energy Storage,” 2008 IEEE Energy 2030 Conference, 2008, pp. 1-7, DOI: 10.1109/ENERGY.2008.4780999.
[21] 吳進忠,「再生能源併聯運轉對電力調度的挑戰與機會」,台灣電力股份有限公司 電力調度處, 2018年8月8日。
[22] I. Rychlik, “A new definition of the rainflow cycle counting method,” International Journal of Fatigue, vol. 9, Issue 2, 1987.
[23] C. H. McInnes, P. A. Meehan, “Equivalence of four-point and three-point rainflow cycle counting algorithms,” International Journal of Fatigue, vol. 30, Issue 3, 2008.
[24] D. Stroe, A. Stan, R. Diosi, R. Teodorescu, S. J. Andreasen, “Short term energy storage for grid support in wind power applications,” 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), 2012, pp. 1012-1021, DOI: 10.1109/OPTIM.2012.6231832.
[25] I. Rychlik, “A new definition of the rainflow cycle counting method,” International Journal of Fatigue, vol. 9, Issue 2, 1987.
[26] K. Mongird, V. Viswanathan, J. Alam, C. Vartanian, V. Sprenkle, R. Baxter , “2020 Grid Energy Storage Technology Cost and Performance Assessment,” in Energy Storage Grand Challenge Cost and Performance Assessment 2020.

QR CODE