簡易檢索 / 詳目顯示

研究生: 黃俊瑋
Chun-Wei Huang
論文名稱: 以二階段燒結控制氧化鈰固態氧化物燃料電池電解質之微結構與電性研究
Electrical properties and microstructure of cerium oxide electrolytes produced by two-step sintering
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 段維新
none
陳錦毅
none
顏怡文
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 113
中文關鍵詞: 固態氧化物電解質二階段燒結微結構交流阻抗圖譜
外文關鍵詞: SOFC, Two-step sintering, microstructure, AC-impedance spectroscopy
相關次數: 點閱:381下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

以傳統的球磨法製備出摻雜稀土元素氧化釤的二氧化鈰基固態電解質Ce1-xSmxO2-x/2 (x=0, 0.2, 0.4)粉末,經二階段燒結後,具有高氧離子傳導的能力。
以(X-ray diffraction analysis, XRD)鑑定二氧化鈰之相結構(Fluorite structure),並利用(Scanning electron microscopy, SEM)觀察比較傳統的一階段燒結與二階段燒結下在不同的燒結溫度下(1500~1600oC),其微結構之緻密程度與晶粒大小分佈的變化,與(Electron back-scattered diffraction, EBSD)分析其晶界之能量分佈,為了掌握晶界在不同燒結溫度下之變化,利用(Transmission electron microscopy, TEM)觀察傳統的一階段燒與二階段燒結下晶界形貌的變化,最後以交流阻抗量測儀(AC-impedance)量測在不同的環境溫度下(600~800oC),不同微結構之阻抗性質,並計算不同微結構下晶粒與晶界離子導電性之變化,與活化能的大小。
其中電性表現最好的為二階段燒結的試樣0SDC-1600-1500-20h,在環境溫度800oC下其晶界導電度為1.38×10-3、晶粒導電度為1.41×10-2、整體導電度為1.26×10-2、活化能為0.89 eV。


Samarium doped ceria (SDC) is good candidate for application in intermediate temperature solid oxide fuel cells (IT-SOFC) due to the ability of high oxygen ionic conductivity.
SDC powders Ce1-xSmxO2-x/2 (x=0, 0.2, 0.4) is synthesized by traditional solid state reaction method and sintered to densify in conventional sintering and two-step sintering. The sample were characterized by XRD, SEM, EBSD, TEM and AC-impedance in the temperature range of 500~700oC.
The uniformly particle size (1~4m) of the SDC mixed powders allows the sintering of the samples into highly dense (≅95%) pellet at 1600oC. All powders and pellet were found to be pure CeO2 or ceria-based solutions with fluorite-type structure in X-ray diffractometer. The microstructure of grain size (≅ 8~15m) and grain boundaries in sintered pellets was observed under the SEM and EBSD. The morphology of grain boundaries were defined by high resolution transmission electron microscopy. All the solid oxide electrolytes were characterized by impedance spectroscopy to distinguish the grain and grain boundary electrical properties. The sample 0SDC-1600-1500-20h has the best electrical properties under 800 oC (σgb =1.38×10-3 S/cm, σg =1.41×10-2 S/cm, σeff =1.26×10-2 S/cm, Q =0.89 eV).

摘要 I 關鍵字 : 固態氧化物電解質、二階段燒結、微結構、交流阻抗圖譜 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 XII 第1章 緒論 1 1.1 研究動機與目的 1 第2章 文獻回顧 2 2.1 二氧化鈰之特性及應用 2 2.1.1 物理性質 2 2.1.2 化學性質 4 2.2 燃料電池之重要性 4 2.3 燃料電池之類型 5 2.4 固態氧化物燃料電池原理與組成 7 2.4.1 固態氧化物燃料電池工作原理 7 2.4.2 固態氧化物燃料電池組成 9 2.5 固態電解質的選用及微結構 11 2.5.1 鈣鈦礦結構 (Pervoskite structure, ABO3) 11 2.5.2 螢石結構 (Fluorite structure CaF2) 13 2.6 固態電解質導電機制的變因 16 2.6.1 環境因素 19 2.6.2 微結構控制 26 2.7 電化學交流阻抗分析簡介 (AC-IMPEDANCE) 32 2.7.1 電化學交流阻抗圖譜與基礎理論 33 2.7.2 等效電子元件訊號 34 2.8 背向散射電子繞射 (ELECTRON BACK-SCATTERED DIFFRACTION, EBSD)圖譜分析 38 2.8.1 EBSD分析技術原理 38 2.8.2 晶界分類 40 2.8.3 共位晶界 41 第3章 實驗方法 44 3.1 實驗藥品與儀器 44 3.2 實驗流程 45 3.3 試片製備 47 3.3.1 Ce1-xSmxO2-x/2粉末合成 47 3.3.2 Ce1-xSmxO2-x/2壓碇與燒結 47 3.4 粉體與塊材之特性量測 48 3.4.1 X光繞射分析 (X-ray diffraction analysis, XRD) 48 3.4.2 場發射掃描式電子顯微鏡 (Field-emission scanning electron microscope, FE-SEM) 49 3.4.3 燒結體密度分析 49 3.4.4 EBSD晶界能量與晶粒取向分析 50 3.4.5 場發射穿透式電子顯微鏡 (Transmission electron microscopy, TEM)試片製備 51 3.4.6 交流組沆量測 51 第4章 結果討論 53 4.1 初始粉末CEO2與SM2O3性質分析 53 4.1.1 初始粉末粒徑分佈 53 4.1.2 初始粉末相鑑定 60 4.2 CE1-XSMXO2-X/2 一階段燒結後之塊材性質分析 61 4.2.1 一階段燒結塊材之XRD結晶相與密度分析 61 4.2.2 微結構與晶相分析 65 4.3 CE1-XSMXO2-X/2二階段燒結後之塊材性質分析 73 4.3.1 微結構與晶相分析 73 4.3.2 EBSD晶界分析 77 4.3.3 TEM晶界微結構觀察 81 4.3.4 交流阻抗圖譜分析與計算 90 第5章 結論 107 第6章 參考文獻 109

[1] U. Hennings, R. Reimert, Investigation of the structure and the redox behavior of gadolinium doped ceria to select a suitable composition for use as catalyst support in the steam reforming of natural gas, Applied Catalysis A: General 325 (1) (2007) 41-49.
[2] A. Trovarelli, Catalytic Properties of Ceria and CeO2-Containing Materials, Catalysis Reviews 38 (4) (1996) 439-520.
[3] C.-Y. Chen, C.-L. Liu, Doped ceria powders prepared by spray pyrolysis for gas sensing applications, Ceramics International 37 (7) (2011) 2353-2358.
[4] B. Park, H. Lee, K. Park, H. Kim, H. Jeong, Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry, Journal of Materials Processing Technology 203 (1–3) (2008) 287-292.
[5] H. Inaba, H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics 83 (1–2) (1996) 1-16.
[6] C. Peng, Y. Wang, K. Jiang, B.Q. Bin, H.W. Liang, J. Feng, J. Meng, Study on the structure change and oxygen vacation shift for Ce1-xSmxO2-y solid solution, Journal of Alloys and Compounds 349 (1-2) (2003) 273-278.
[7] C. Ying-Yu, R. Schmid, Y.A. Chang, Calculation of the equilibrium phase diagrams and the spinodally decomposed structures of the Fe---Cu---Ni system, Acta Metallurgica 33 (8) (1985) 1369-1380.
[8] A. Kelly, K.M. Knowles, Front Matter, in: Crystallography and Crystal Defects, John Wiley & Sons, Ltd, 2012, pp. i-xiv.
[9] U.S.D.o. Energy, Fuel Cell Handbook by EG&G Technical Service Inc. , 7thEd., (2004).
[10] N.Q. Minh, Ceramic Fuel Cells, Journal of the American Ceramic Society 76 (3) (1993) 563-588.
[11] S.C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics 135 (1–4) (2000) 305-313.
[12] Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics 48 (3–4) (1991) 207-212.
[13] K. Eguchi, H. Kojo, T. Takeguchi, R. Kikuchi, K. Sasaki, Fuel flexibility in power generation by solid oxide fuel cells, Solid State Ionics 152–153 (0) (2002) 411-416.
[14] S.J. Skinner, Recent advances in perovskite-type materials for SOFC cathodes, Fuel Cells Bulletin 4 (33) (2001) 6-12.
[15] M. Godickemeier, K. Sasaki, L.J. Gauckler, I. Riess, Perovskite cathodes for solid oxide fuel cells based on ceria electrolytes, Solid State Ionics 86–88, Part 2 (0) (1996) 691-701.
[16] C.-L. Chu, J.-Y. Wang, S. Lee, Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering, International Journal of Hydrogen Energy 33 (10) (2008) 2536-2546.
[17] S. Linderoth, P.V. Hendriksen, M. Mogensen, N. Langvad, Investigations of metallic alloys for use as interconnects in solid oxide fuel cell stacks, Journal of Materials Science 31 (19) (1996) 5077-5082.
[18] H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, Electrolytes for Solid-Oxide Fuel Cells., MRS Bulletin 30 (2005) 591-595.
[19] J.W. Fergus, Electrolytes for solid oxide fuel cells, Journal of Power Sources 162 (1) (2006) 30-40.
[20] B. Zhu, Solid oxide fuel cell (SOFC) technical challenges and solutions from nano-aspects, International Journal of Energy Research 33 (13) (2009) 1126-1137.
[21] T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor, Journal of the American Chemical Society 116 (9) (1994) 3801-3803.
[22] N. Ramadass, ABO3-type oxides—Their structure and properties—A bird's eye view, Materials Science and Engineering 36 (2) (1978) 231-239.
[23] E.D. Wachsman, G.R. Ball, N. Jiang, D.A. Stevenson, Structural and defect studies in solid oxide electrolytes, Solid State Ionics 52 (1–3) (1992) 213-218.
[24] R. Chockalingam, V.R.W. Amarakoon, H. Giesche, Alumina/cerium oxide nano-composite electrolyte for solid oxide fuel cell applications, Journal of the European Ceramic Society 28 (5) (2008) 959-963.
[25] B.C.H. Steele, Oxygen ion conductors and their technological applications, Materials Science and Engineering: B 13 (2) (1992) 79-87.
[26] X. Guan, H. Zhou, Z. Liu, Y. Wang, J. Zhang, High performance Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells, Materials Research Bulletin 43 (4) (2008) 1046-1054.
[27] H.-C. Yao, Y.-X. Zhang, J.-J. Liu, Y.-L. Li, J.-S. Wang, Z.-J. Li, Synthesis and characterization of Gd3+ and Nd3+ co-doped ceria by using citric acid–nitrate combustion method, Materials Research Bulletin 46 (1) (2011) 75-80.
[28] S. Dikmen, H. Aslanbay, E. Dikmen, O. Şahin, Hydrothermal preparation and electrochemical properties of Gd3+ and Bi3+, Sm3+, La3+, and Nd3+ codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell, Journal of Power Sources 195 (9) (2010) 2488-2495.
[29] S. Omar, E.D. Wachsman, J.C. Nino, Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials, Solid State Ionics 178 (37–38) (2008) 1890-1897.
[30] F.-Y. Wang, S. Chen, S. Cheng, Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells, Electrochemistry Communications 6 (8) (2004) 743-746.
[31] X. Sha, Z. Lu, X. Huang, J. Miao, L. Jia, X. Xin, W. Su, Preparation and properties of rare earth co-doped Ce0.8Sm0.2−xYxO1.9 electrolyte materials for SOFC, Journal of Alloys and Compounds 424 (1–2) (2006) 315-321.
[32] H. Li, C. Xia, M. Zhu, Z. Zhou, G. Meng, Reactive Ce0.8Sm0.2O1.9 powder synthesized by carbonate coprecipitation: Sintering and electrical characteristics, Acta Materialia 54 (3) (2006) 721-727.
[33] V. Singh, S. Babu, A.S. Karakoti, A. Agarwal, S. Seal, Effect of Submicron Grains on Ionic Conductivity of Nanocrystalline Doped Ceria, Journal of Nanoscience and Nanotechnology 10 (10) (2010) 6495-6503.
[34] M.R. Kosinski, R.T. Baker, Preparation and property–performance relationships in samarium-doped ceria nanopowders for solid oxide fuel cell electrolytes, Journal of Power Sources 196 (5) (2011) 2498-2512.
[35] G.B. Jung, T.J. Huang, C.L. Chang, Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte, Journal of Solid State Electrochemistry 6 (4) (2002) 225-230.
[36] G.B. Balazs, R.S. Glass, ac impedance studies of rare earth oxide doped ceria, Solid State Ionics 76 (1–2) (1995) 155-162.
[37] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Ionics 52 (1–3) (1992) 165-172.
[38] H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, Journal of Applied Electrochemistry 18 (4) (1988) 527-531.
[39] D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson, Optimization of ionic conductivity in doped ceria, Proceedings of the National Academy of Sciences of the United States of America 103 (10) (2006) 3518-3521.
[40] G.B. Jung, T.J. Huang, M.H. Huang, C.L. Chang, Preparation of samaria-doped ceria for solid-oxide fuel cell electrolyte by a modified sol-gel method, Journal of Materials Science 36 (24) (2001) 5839-5844.
[41] Y. Zheng, S. He, L. Ge, M. Zhou, H. Chen, L. Guo, Effect of Sr on Sm-doped ceria electrolyte, International Journal of Hydrogen Energy 36 (8) (2011) 5128-5135.
[42] D. Perez-Coll, P. Nunez, J.R. Frade, J.C.C. Abrantes, Conductivity of CGO and CSO ceramics obtained from freeze-dried precursors, Electrochimica Acta 48 (11) (2003) 1551-1557.
[43] B. Li, X. Wei, W. Pan, Improved electrical conductivity of Ce0.9Gd0.1O1.95 and Ce0.9Sm0.1O1.95 by co-doping, International Journal of Hydrogen Energy 35 (7) (2010) 3018-3022.
[44] B. Li, Y. Liu, X. Wei, W. Pan, Electrical properties of ceria Co-doped with Sm3+ and Nd3+, Journal of Power Sources 195 (4) (2010) 969-976.
[45] T. Mori, J. Drennan, Influence of microstructure on oxide ionic conductivity in doped CeO2 electrolytes, J Electroceram 17 (2-4) (2006) 749-757.
[46] Z.-P. Li, T. Mori, G.J. Auchterlonie, J. Zou, J. Drennan, Direct evidence of dopant segregation in Gd-doped ceria, Applied Physics Letters 98 (9) (2011) 093104-093104-093103.
[47] M. Aoki, Y.-M. Chiang, I. Kosacki, L.J.-R. Lee, H. Tuller, Y. Liu, Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia, Journal of the American Ceramic Society 79 (5) (1996) 1169-1180.
[48] H.L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics 131 (1–2) (2000) 143-157.
[49] H.-K. Kim, W.-S. Ko, H.-J. Lee, S.G. Kim, B.-J. Lee, An identification scheme of grain boundaries and construction of a grain boundary energy database, Scr. Mater. 64 (12) (2011) 1152-1155.
[50] E.B.a.J.R. Macdonald, Impedance spectroscopy, theory experiment and applications, Second Edition ed., John Wiley & Sons, Inc., Hoboken, New Jersey., 2005.
[51] V. Randle, Overview No. 127 The role of the grain boundary plane in cubic polycrystals, Acta Materialia 46 (5) (1998) 1459-1480.
[52] V. Randle, Twinning-related grain boundary engineering, Acta Materialia 52 (14) (2004) 4067-4081.
[53] M. L. Kronberg and F. H. Wilson, Transactions of the American Institute of Mining and Metallurgical Engineers 185, 501 (1949).
[54] G. Palumbo and K. T. Aust, Acta Metallurgica et Materialia 38, 2343 (1990).
[55] S.-J. Shih, S. Lozano-Perez, D.J.H. Cockayne, Investigation of grain boundaries for abnormal grain growth in polycrystalline SrTiO3, Journal of Materials Research 25 (02) (2010) 260-265.

QR CODE