簡易檢索 / 詳目顯示

研究生: 劉承樺
Cheng-Hua Liu
論文名稱: 連續纖維複合材料3D列印之研究
Study on Continuous Fiber-reinforced Composites 3D printing
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 陳羽薰
Yu-Xun Chen
劉浩志
Hao-chih Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 112
中文關鍵詞: 複合材料連續碳纖維3D列印
外文關鍵詞: Composite materials, continuous carbon fiber, 3D Printing
相關次數: 點閱:304下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來碳纖維複合材料之需求逐年遞增,然而3D列印複合材料成品性能尚無法符合工業上之需求,因此本實驗室使用連續碳纖維搭配環氧基雙固型樹脂開發3D列印複合材料製程,其可分為連續碳纖維線材製備以及碳纖維列印頭設計與列印兩階段。本研究主軸是搭建連續碳纖維複合材料3D列印機台,並探討目前複合材料3D列印技術中無傾斜、傾斜、整平三種常用之列印方式的優劣。
    本研究以OM觀察複合材料列印頭的積層效果,並就觀測結果對其進行改良,同時建立複合材料3D列印系統探討三種常用之列印方式的纖維的分布狀況。由實驗結果得到,無傾斜列印需選用大的噴頭孔徑及層厚度降低碳纖維與噴頭之間摩擦,以減少碳纖維分岔和斷裂的產生,導致該列印模式成品的基材含量高達70.12%;傾斜列印由於未對材料施加壓力以及噴頭會與相鄰材料產生干涉,導致成品產生許多空隙使力學性能降低,因此需要大量的樹脂進行黏固,使得成品的基材含量提高至74.58%;整平列印結合傾斜列印的出料順暢以及刮板壓平的功能,可達到減少空隙以及確保層厚度之目的,同時大幅降低成品之基材含量至54.67%。依據纖維分布狀況以及基材含量多寡,整平列印是三種列印模式中較佳的。


    The demand for composite material such as carbon fiber increases these years. However, the mechanical performance of 3D printing composite material nowadays isn’t still satisfied in industry. Therefore, in this study, the continuous carbon fiber and epoxy double solidifying resin are applied to develop the process of 3D printing composite material. It can be divided into two stages. The first stage is continuous carbon fiber wire preparation and the other stage is carbon fiber print head design and printing. The main purpose of this study is to develop a continuous carbon fiber composite material 3D printer. Furthermore, the pros and cons in composite material printing with none tilting, tilting and flattening printing method is also discussed.
    In this study, the OM(optical microscope) is adopted to observe the lamination quality of the composite material printing and make the improvement with the observation results. Meanwhile, the composite material 3D printing system is developed to discuss the fiber distribution by using three common printing methods. As the results of the experiments, for none tilting printing method, it has to choose a larger nozzle and layer thickness to prevent the friction between the nozzle and the carbon fiber causes some problems such as fiber breakage bifurcation. Moreover, the proportion of matrix in the product with none tilting method is up to 70.12%. The tilting printing method has many voids in the product due to the interference of the nozzle on adjacent materials as well as no pressure is applied to the extruded material. These voids reduce the mechanical performance of the product. Thus, it needs a great amount of resin to solidify. These cause the proportion of matrix in the product increased to 74.58%. Flattening method combines the advantages of tilting printing methods such as smooth discharge and flattening of the scraper to achieve voids reduced and layer thickness ensured. As a result, the proportion of matrix in the product significantly reduced to 54.67%. According to the distribution of carbon fiber and matrix in the product, the flattening method is the better one compared to the other tested methods.

    摘要 I Abstract II 致謝 III 目錄 IV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 研究方法 4 1.4 論文架構 5 第二章 文獻探討 7 2.1 積層製造技術(Additive Manufacturing,AM) 7 2.1.1 光聚合固化技術(Vat Photopolymerization) 7 2.1.2 材料擠製成型技術(Material Extrusion) 10 2.1.3 疊層製造成型技術(Sheet Lamination) 13 2.1.4 材料噴塗成型技術(Material Jetting, MJ) 15 2.2 纖維複合材料製程技術 17 2.2.1 纖維複合材料製程 18 2.3 3D列印機複合材料相關文獻 20 2.3.1 短纖維/熱塑性樹脂複合材料 20 2.3.2 短纖維/熱固性樹脂複合材料 21 2.3.3 連續纖維/熱塑性樹脂複合材料 21 2.3.4 連續纖維/熱固性樹脂複合材料 23 第三章 複合材料列印頭設計與改良 24 3.1 複合材料3D列印製程與列印方法 24 3.1.1 製程原理與設計概念 24 3.1.2 基材(Matrix)的選擇 27 3.2 初版複合材料列印頭設計與測試 28 3.2.1 噴頭模組設計 28 3.2.2 光源模組設計 31 3.2.3 斷料方式 34 3.2.4 初版複合材料列印頭 35 3.2.5 初版複合材料列印頭之缺陷 36 3.3 第二版複合材料列印頭設計與測試 37 3.3.1 噴頭模組之治具改良 37 3.3.2 噴頭模組之浸潤方式改良 38 3.3.3 第二版複合材料列印頭 39 3.3.4 第二版複合材料列印頭缺陷 40 3.4 第三版複合材料列印頭設計與測試 41 3.4.1 列印頭之治具改良 41 3.4.2 光源模組之固化光源替換 43 3.4.3 整平模組設計 45 3.4.4 第三版複合材料列印頭 47 第四章 複合材料3D列印機整體架構 48 4.1 系統架構 48 4.2 複合材料機台硬體架構 49 4.2.1 XYZC軸向系統 52 4.2.2 成型平台 54 4.2.3 噴頭模組 55 4.2.4 光源模組 56 4.2.5 整平模組 57 4.3 複合材料機台軟體系統架構 57 4.3.1 複材列印控制軟體 57 4.3.2 人機控制介面介紹 60 4.4 實驗材料 61 4.4.1 基材-環氧基雙固型樹脂 61 4.4.2 增強材-碳纖維 63 第五章 複合材料3D列印測試 65 5.1 列印模式 65 5.2 無傾斜列印 67 5.2.1 無傾斜列印之噴頭孔徑與層厚度關係 67 5.2.2 無傾斜列印之列印速度測試 71 5.2.3 無傾斜列印之基材含量 72 5.2.4 無傾斜列印之積層板疊層測試 72 5.3 傾斜列印 74 5.3.1 傾斜角度測試 75 5.3.2 傾斜列印之噴頭孔徑測試 77 5.3.3 傾斜列印之基材含量 80 5.3.4 傾斜列印之積層板疊層測試 80 5.4 整平列印 82 5.4.1 整平列印之噴頭孔徑與層厚度之關係 83 5.4.2 整平列印之基材含量 90 5.4.3 整平列印之積層板疊層測試 90 5.5 列印模式之結果與討論 92 第六章 結論與未來研究方向 93 6.1 結論 93 6.2 未來研究方向 94 參考文獻 95

    [1] Marforged, https://markforged.com/
    [2] Moi Composites, https://www.moi.am/
    [3] Continuous Composites, https://www.continuouscomposites.com/
    [4] 光聚合固化成型技術 (Vat Photopolymerization), I. Gibson, D. W. Rosen, B. Stucker, “Additive manufacturing technologies,” Vol. 238. New York: Springer, 2010.
    [5] 材料擠製成型技術 (Material Extrusion), I. Gibson, D. W. Rosen, B. Stucker, “Additive manufacturing technologies,” Vol. 238. New York: Springer, 2010.
    [6] 材料噴塗成型技術 (Material Jetting). http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialjetting/
    [7] 黏結劑噴 塗成型技術 (Binder Jetting), I. Gibson, D. W. Rosen, B. Stucker, “Additive manufacturing technologies,” Vol. 238. New York: Springer, 2010.
    [8] 粉體熔化成型技術 (Powder Bed Fusion), I. Gibson, D. W. Rosen, B. Stucker, “Additive manufacturing technologies,” Vol. 238. New York: Springer, 2010.
    [9] 疊層製造成型技術 (Sheet Lamination), http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/sheetlamination/
    99
    [10] 指向性能量沉積成型技術指向性能量沉積成型技術(Directed Energy Deposition), I. Gibson, D. W. Rosen, B. Stucker, “Additive manufacturing technologies,” Vol. 238. New York: Springer, 2010.
    [11] Arevolabs, https://arevo.com/
    [12] EnvisioTEC, https://envisiontec.com/
    [13] Impossible Objects, https://www.impossible-objects.com/
    [14] W. Zhong, F. Li, Z. Zhang, L. Song, Z. Li. (2001), “Short fiber reinforced composites for fused deposition modeling.” Mater Sci Eng 301:125-130
    [15] O. Carneiro, A. Silva, R. Gomes.Fused. (2015), “Deposition modeling with polypropylene.” Mater Des 83:768-776
    [16] Compton BG, Lewis JA. (2014). “3D-printing of lightweight cellular composites.” Adv Mater 26:5930-5.
    [17] Matsuzaki R, Ueda M, Namiki M, Jeong T-K, Asahara H, Horiguchi K, et al. (2016). “Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation.” Sci Rep 6:23058.
    [18] Nanya Li, Yingguang Li, Shuting Liu. (2016), “Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. ” J. Mater. Process. Technol 238:218-225.
    [19] Xiaoyong Tian, Tengfei Liu, Qingrui Wang, AblizDilmurat, DichenLi, Gerhard Ziegmann, (2017). “Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA Composites.” Journal of Cleaner Production 142:1609-1618.
    100
    [20] W. Hao, Y. Liu, H. Zhou, H. Chen, D. Fang. (2018). “Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. ” Polym Test 65:29-34
    [21] 台灣塑膠工業股份有限公司台灣塑膠工業股份有限公司, https://www.fpg.com.tw/tw
    [22] C. Y. Baldwin, K. B. Clark, “Design rules: the Power of Modularity, volume 1,” The MIT Press, 2000.
    [23] 鄭育明鄭育明, “筆記型電腦產品研發的模組化設計之探討筆記型電腦產品研發的模組化設計之探討-以藍天電以藍天電腦為例腦為例,” 臺灣科技大學工業管理研究所碩士論文臺灣科技大學工業管理研究所碩士論文, 2008.
    [24] 張智瑄張智瑄, “光固化式彩色光固化式彩色3D列印之滾輪整平模組設計與研究列印之滾輪整平模組設計與研究” 國立臺灣科技大學碩士論文國立臺灣科技大學碩士論文, 2016

    無法下載圖示 全文公開日期 2024/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE