簡易檢索 / 詳目顯示

研究生: 林昱廷
Yu-Ting Lin
論文名稱: 飛彈姿態運動之適應控制研究
Study on the Adaptive Control Strategy for Missile Attitude Tracking
指導教授: 黃安橋
An-Chyau Huang
口試委員: 陳亮光
Liang-Kuang Chen
藍振洋
Chen-Yang Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 102
中文關鍵詞: 飛彈姿態適應控制氣動力係數環境外擾時變未知函數函數近似法
外文關鍵詞: missile, attitude, adaptive control, aerodynamic coefficients, environmental disturbance, time-varying unknown function, function approximation technique(FAT)
相關次數: 點閱:176下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 飛彈從發射到命中目標之間的控制動作極為複雜,大致可分為將狀態回授的導航、擬定目標追跡策略的導引以及實踐其追跡的飛行控制。而飛行控制中必須考量到飛彈系統內部複雜的未知項,其造成難以精準地實踐追跡。本論文針對飛彈的非線性系統,提出新的姿態適應控制器,其係將氣動力矩係數以及環境造成的外擾整合在未知函數中,再以函數近似估測之,並配合Lyapunov穩定法則來確保追蹤誤差的漸近收斂性,藉此改善傳統適應控制無法處理快速時變未知項的問題,同時也解除過往強健控制需已知未知邊界之限制。此外,本文也整理現有以適應方法估測外擾邊界之強健控制法的缺點。最後,本文透過電腦模擬來驗證本文所提控制器的可行性。


    The control actions of the missile from launching to intercepting the target are extremely complicated, which can be roughly divided into the navigation that feedbacks the state, the guidance that generates the target tracking strategy, and the flight control that implements its tracking strategy. The actual flight control must consider the complex unknown parameters inside the missile system, which makes it difficult to track the desired trajectory accurately. This thesis proposes a new attitude adaptive controller for the nonlinear missile dynamics, which lumps the aerodynamic moment coefficients and the external disturbances caused by the environment into an unknown function and then an update strategy is developed to give good estimation. The Lyapunov method is used to prove the convergence of the asymptotical stability of the tracking error and the boundedness of the internal signals. Finally, this thesis uses computer simulation to verify the feasibility of the proposed controller.

    摘要 I Abstract II 致謝 III 目錄 V 符號索引 VII 圖片索引 XVIII 第一章 緒論 1 1.1 簡介 1 1.2 文獻回顧 1 1.3 研究動機 4 第二章 飛彈模型建立 5 2.1 坐標系定義 5 2.2 飛彈的運動學微分方程式 5 2.3 飛彈的運動力學微分方程式 6 2.4 飛彈的氣動力與力矩係數 7 2.5 飛彈姿態之數學模型建立 9 第三章 姿態運動控制器設計 10 3.1 過往控制方法整理 10 3.2 飛彈姿態控制器設計 13 第四章 模擬結果 16 4.1 飛彈系統參數與控制器參數 16 4.2 模擬範例一(未知係數為常數) 18 4.3 模擬範例二(未知係數為常數加弦波函數) 23 4.4 模擬範例三(未知係數為常數加弦波函數加隨機雜訊) 29 4.5 模擬範例四(更加劣化的條件) 34 第五章 結論與未來展望 40 參考文獻 41 附錄A: 剛體姿態運動學 47 A.1 四元數定義與形式 47 A.2 四元數加減 48 A.3 四元數乘法 49 A.4 四元數除法 50 A.5 剛體內的自由向量 50 A.6 Rodrigues’ rotation formula 51 A.7 旋轉矩陣(Spatial Rotation Matrix) 52 A.8 坐標轉換 54 A.9 連續旋轉與角速度的關係 55 A.10 尤拉參數(Euler Parameters) 55 A.11 四元數的微分方程 57 A.12 尤拉角(Euler Angle) 60 A.13 尤拉角微分方程 62 A.14 尤拉角、旋轉矩陣與四元數轉換 63 A.15 尤拉角Gimbal lock推導 66 附錄B: 剛體運動力學 67 B.1 剛體動力學坐標系統 67 B.2 剛體的線動量 68 B.3 剛體的角動量 68 B.4 慣量矩陣(Inertia Matrix) 69 B.5 剛體旋轉運動方程式 70 B.6 剛體平移運動方程式 72 附錄C: 空氣動力學 74 C.1 流體定義 74 C.2 物理定性、定量與因次 74 C.3 黏滯係數 75 C.4 Bernoulli’s equation 76 C.5 Pi理論因次分析與雷諾數 80 C.6 流體連續式與壓縮性 83 C.7 基礎熱力學 84 C.8 比熱定義 86 C.9 等熵流體與空氣 87 C.10 音速與馬赫數 88 C.11 機翼參數 92 C.12 單機翼氣動力與力矩係數 93 C.13 機體的合力與合力矩(未考慮機翼偏轉) 96 C.14 機體的合力與合力矩(考慮機翼偏轉) 100 C.15 空氣動力係數的特性與限制(失速與不確定性) 102

    [1] V. Sundaram, “Missile materials—Current status and challenges,” Bulletin of Materials Science, vol. 19, no. 6, pp. 1025-1029, 1996.
    [2] S. Theodoulis and P. Wernert, “Flight dynamics & control for smart munition: the ISL contribution,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 15512-15517, 2017.
    [3] 傅上珉,具尾翼彈體之飛行氣動力特性研究,碩士論文,機械工程系,國防大學理工學院,2013。
    [4] 高鴻晟,超音速流通過機翼釋放飛彈彈射力變化數值分析,碩士論文,飛機工程系,國立虎尾科技大學,2019。
    [5] İ. H. Guzelbey, A. Sumnu, and M. H. Dogru, “A review of aerodynamic shape optimization for a missile,” The Eurasia Proceedings of Science Technology Engineering and Mathematics, no. 4, pp. 94-102, 2018.
    [6] N. Sharma and R. Kumar, “Missile grid fins analysis using computational fluid dynamics: a systematic review,” INCAS Bulletin, vol. 11, no. 1, pp. 151-169, 2019.
    [7] P. B. Jackson, “Overview of missile flight control systems,” Johns Hopkins APL Technical Digest, vol. 29, no. 1, pp. 9-24, 2010.
    [8] F. P. Adler, “Missile guidance by three‐dimensional proportional navigation,” Journal of Applied Physics, vol. 27, no. 5, pp. 500-507, 1956.
    [9] J. R. Cloutier, J. H. Evers, and J. J. Feeley, “Assessment of air-to-air missile guidance and control technology,” IEEE Control Systems Magazine, vol. 9, no. 6, pp. 27-34, 1989.
    [10] 楊憲東,葉芳柏,線性與非線性 控制理論:對局觀點,全華圖書,1997。
    [11] J. Moon, K. Kim, and Y. Kim, “Design of missile guidance law via variable structure control,” Journal of Guidance, Control, and Dynamics, vol. 24, no. 4, pp. 659-664, 2001.
    [12] 薛名雄,針對可攔截機動目標之飛彈控制器設計,碩士論文,電機工程學系,國立臺灣大學,2007。
    [13] 馮仰靚,具加速度時間延遲之飛彈的強健導引律設計,碩士論文,電控工程系,國立交通大學,2012。
    [14] Z. Li, Y. Xia, C. Y. Su, J. Deng, J. Fu, and W. He, “Missile guidance law based on robust model predictive control using neural-network optimization,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 8, pp. 1803-1809, 2014.
    [15] G. Weiss and I. Rusnak, “All-aspect three-dimensional guidance law based on feedback linearization,” Journal of Guidance, Control, and Dynamics, vol. 38, no. 12, pp. 2421-2428, 2015.
    [16] B. Panchal, N. Mate, and S. Talole, “Continuous-time predictive control-based integrated guidance and control,” Journal of Guidance, Control, and Dynamics, vol. 40, no. 7, pp. 1579-1595, 2017.
    [17] J. Guo, Y. Xiong, and J. Zhou, “A new sliding mode control design for integrated missile guidance and control system,” Aerospace Science and Technology, vol. 78, pp. 54-61, 2018.
    [18] M. Weiss and T. Shima, “Linear quadratic optimal control-based missile guidance law with obstacle avoidance,” IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 1, pp. 205-214, 2018.
    [19] L. G. Lin and M. Xin, “Missile guidance law based on new analysis and design of SDRE scheme,” Journal of Guidance, Control, and Dynamics, vol. 42, no. 4, pp. 853-868, 2019.
    [20] R. Chai, A. Savvaris, and S. Chai, “Integrated missile guidance and control using optimization-based predictive control,” Nonlinear Dynamics, vol. 96, no. 2, pp. 997-1015, 2019.
    [21] D. Hong, M. Kim, and S. Park, “Study on Reinforcement Learning-Based Missile Guidance Law,” Applied Sciences, vol. 10, no. 18, article 6567, 2020.
    [22] T. Herlambang, “Design of a navigation and guidance system of missile with trajectory estimation using ensemble Kalman filter square root (EnKF-SR),” International Conference on Computer Applications and Information Processing Technology, pp. 1-7, 2017.
    [23] B. Hou, Z. He, D. Li, H. Zhou, and J. Wang, “Maximum correntropy unscented Kalman filter for ballistic missile navigation system based on SINS/CNS deeply integrated mode,” Sensors, vol. 18, no. 6, article 1724, 2018.
    [24] H. D. Froning, Jr., and D. L. Gieseking, “Bank-to-turn steering for highly maneuverable missiles,” Guidance and Control Conference, pp. 1-6,1973.
    [25] A. Arrow and D. Yost, “Large angle-of-attack missile control concepts for aerodynamically controlled missiles,” Journal of Spacecraft and Rockets, vol. 14, no. 10, pp. 606-613, 1977.
    [26] M. Kovach, T. Stevens, and A. Arrow, “A bank-to-turn autopilot design for an advanced air-to-air interceptor,” Guidance, Navigation and Control Conference, pp. 1346-1353, 1987.
    [27] F. K. Hsu, Y. H. Lin, T. S. Kuo, and C. F. Hsu, “Decoupling control of a bit missile by eigenstructure assignment,” IEEE Conference on Decision and Control, vol. 26, pp. 2031-2036, 1987.
    [28] A. Arrow and D. Williams, “Comparison of classical and modern autopilot design and analysis techniques for a tactical air-to-air bank-to-turn missile,” Guidance, Navigation and Control Conference, pp. 1360-1371, 1987.
    [29] C. L. Sheperd and L. Valavani, “Autopilot design for bank-to-turn missiles using LQG/LTR methodology,” American Control Conference, pp. 579-586, 1988.
    [30] D. Gustafson, J. Baillieul, and M. Levi, “On nonlinear control for bank-to-turn missile autopilots,” Guidance, Navigation and Control Conference, pp. 1119-1133, 1987.
    [31] J. Bossi and M. Langehough, “Multivariable autopilot designs for a bank-to-turn missile,” American Control Conference, pp. 567-572, 1988.
    [32] 張松國,BBT飛彈非線性動力學模式及多項式回授追蹤控制,博士論文, 機械工程系,國立臺灣大學,1991。
    [33] 王良彥,具彈頭側噴流之傾斜轉彎飛彈自動駕駛儀設計及其暫態改善,碩士論文,電機工程學系,國立臺灣大學,2003。
    [34] A. Das, T. Garai, S. Mukhopadhyay, and A. Patra, “Feedback linearization for a nonlinear skid-to-turn missile model,” IEEE INDICON, pp. 314-317, 2004.
    [35] C. F. Lin and S. P. Lee, “Robust missile autopilot design using a generalized singular optimalcontrol technique,” Journal of Guidance, Control, and Dynamics, vol. 8, no. 4, pp. 498-507, 1985.
    [36] M. U. Salamci, M. K. Ozgoren, and S. P. Banks, “Sliding mode control with optimal sliding surfaces for missile autopilot design,” Journal of Guidance, Control, and Dynamics, vol. 23, no. 4, pp. 719-727, 2000.
    [37] B. Fu, H. Qi, J. Xu, Y. Yang, S. Wang, and Q. Gao, “Attitude control in ascent phase of missile considering actuator non-linearity and wind disturbance,” Applied Sciences, vol. 9, no. 23, article 5113, 2019.
    [38] 黃彥迪,利用量化回授理論作飛彈控制器設計,碩士論文,控制工程系,國立交通大學,1989。
    [39] K. A. Wise, B. C. Mears and K. Poolla, “Missile autopilot design using optimal control with μ-synthesis,” American Control Conference, pp. 2362-2367, 1990.
    [40] 白鴻慶,高攻角飛彈之強健性控制,碩士論文,航空太空工程學系,國立成功大學,2001。
    [41] 羅易聖,具時變不確定量追蹤系統之 強健控制,碩士論文,機械與精密工程系,國立高雄應用科技大學,2010。
    [42] W. L. Filho and L. Hsu, “Adaptive control of missile attitude,” Adaptive Systems in Control and Signal Processing, pp. 237-242, 1987.
    [43] C. Song, S. J. Kim, S. H. Kim, and H. Nam, “Robust control of the missile attitude based on quaternion feedback,” Control Engineering Practice, vol. 14, no. 7, pp. 811-818, 2006.
    [44] Y. Xia, Z. Zhu, and M. Fu, “Backstepping sliding mode control for missile systems based on an extended state observer,” IET Control Theory & Applications, vol. 5, no. 1, pp. 93-102, 2011.
    [45] 康詠鈞,應用可變結構控制技術於反戰術彈道飛彈具有側向力與氣動力之複合控制技術之研究,碩士論文,電控工程系,國立交通大學,2013。
    [46] G. Mattei and S. Monaco, “Nonlinear autopilot design for an asymmetric missile using robust backstepping control,” Journal of Guidance, Control, and Dynamics, vol. 37, no. 5, pp. 1462-1476, 2014.
    [47] W. Wang, S. Xiong, S. Wang, S. Song, and C. Lai, “Three dimensional impact angle constrained integrated guidance and control for missiles with input saturation and actuator failure,” Aerospace Science and Technology, vol. 53, pp. 169-187, 2016.
    [48] Y. Lee, Y. Kim, G. Moon, and B. E. Jun, “Sliding-mode-based missile-integrated attitude control schemes considering velocity change,” Journal of Guidance, Control, and Dynamics, vol. 39, no. 3, pp. 423-436, 2016.
    [49] J. Huang, C. Lin, J. Cloutier, J. Evers, and C. Dsouza, “Robust feedback linearization approach to autopilot design,” IEEE Conference on Control Applications, pp. 220-225, 1992.
    [50] A. Das, R. Das, S. Mukhopadhyay, and A. Patra, “Sliding mode controller along with feedback linearization for a nonlinear missile model,” International Symposium on Systems and Control in Aerospace and Astronautics, pp.952-956, 2006.
    [51] Y. Yao, B. Yang, F. He, Y. Qiao, and D. Cheng, “Attitude control of missile via fliess expansion,” IEEE Transactions on Control Systems Technology, vol. 16, no. 5, pp. 959-970, 2008.
    [52] Z. Zhu, Y. Xia, and M. Fu, “Adaptive sliding mode control for attitude stabilization with actuator saturation,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4898-4907, 2011.
    [53] Y. Xia, K. Lu, Z. Zhu, and M. Fu, “Adaptive backstepping sliding mode attitude control of missile systems,” International Journal of Robust and Nonlinear Control, vol. 23, no. 15, pp. 1699-1717, 2013.
    [54] X. Wang and J. Wang, “Partial integrated missile guidance and control with finite time convergence,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 5, pp. 1399-1409, 2013.
    [55] M. V. Basin, P. Yu, and Y. B. Shtessel, “Hypersonic missile adaptive sliding mode control using finite-and fixed-time observers,” IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 930-941, 2017.
    [56] 陳世璋,不確定性飛彈系統之強健適應性CMAC追蹤控制設計,碩士論文,電機工程系,明新科技大學,2007。
    [57] H. Wu, Y. Wang, and Z. Zheng, “Robust nonlinear feedback control for BTT missile with NN-based uncertainty estimation,” International Journal of Modelling, Identification and Control, vol. 8, no. 2, pp. 98-106, 2009.
    [58] 陳俊堯,智慧型適應控制於飛彈防禦系統及分數階系統,博士論文,電控工程系,國立交通大學,2015。
    [59] A. C. Huang and Y. S. Kuo, “Sliding control of nonlinear systems containing time-varying uncertainties with unknown bounds,” International Journal of Control, vol. 74, no. 3, pp. 252-264, 2001.
    [60] R. C. Hibbeler and K. B. Yap, Engineering Mechanics Dynamics, 14th ed. 2017.
    [61] M. E. Rose, Elementary Theory of Angular Momentum, Courier Corporation, 1995.
    [62] L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics: Theory and Application, Cambridge University Press, 1981.
    [63] G. M. Siouris, Missile Guidance and Control Systems, Springer Verlag, 2004.
    [64] J. L. Blanco, “A tutorial on SE(3) transformation parameterizations and on-manifold optimization,” Technical Report, University of Malaga, vol. 3, 2010.
    [65] R. Penrose, “A generalized inverse for matrices,” Mathematical proceedings of the Cambridge philosophical society, vol. 51, no. 3, pp. 406-413, 1955.
    [66] E. H. Smith, S. K. Hebbar, and M. F. Platzer, “Aerodynamic characteristics of a canard-controlled missile at high angles of attack,” Journal of spacecraft and rockets, vol. 31, no. 5, pp. 766-772, 1994.
    [67] S. Venugopal and M. Krishnamurthy, “Missile aerodynamics at high angles of attack-A prediction code,” Journal of Spacecraft and Rockets, vol. 32, no. 2, pp. 263-269, 1995.
    [68] D. Vasek, J. Polacek, and P. Konecny, “Improved Estimation of Air-to-Air Missile Aerodynamic Characteristics with Using CFD Method,” Advances in Military Technology, vol. 15, no. 2, 2020.
    [69] J. M. Allen and A. Blair Jr, “Comparison of analytical and experimental supersonic aerodynamic characteristics of a forward control missile,” Journal of Spacecraft and Rockets, vol. 19, no. 2, pp. 155-159, 1982.
    [70] M. L. Nason, C. A. Brown Jr, and R. S. Rock, “An Evaluation of the Roll-Rate Stabilization System of the Sidewinder Missile at Mach Numbers from 0.9 to 2.3,” Research Memorandum for the Bureau of Ordnance, National Advisory Committee for Aeronautics, 1955.
    [71] G. RAPP, “Peformance improvements with Sidewinder missile airframe variants,” 17th Aerospace Sciences Meeting, pp. 91, 1979.
    [72] 秦永元,慣性導航,科學出版社,2014。
    [73] 黃安橋,剛體運動學筆記,國立臺灣科技大學,2020。
    [74] B. Etkin, Dynamics of Atmospheric Flight, Courier Corporation, 2012.
    [75] A. Janota, V. Šimák, D. Nemec, and J. Hrbček, “Improving the precision and speed of Euler angles computation from low-cost rotation sensor data,” Sensors, vol. 15, no. 3, pp. 7016-7039, 2015.
    [76] 黃安橋,剛體動力學筆記,國立臺灣科技大學,2020。
    [77] 楊憲東,自動飛行控制: 原理與實務,全華圖書,2002。
    [78] D. F. Young, B. R. Munson, T. H. Okiishi, and W. W. Huebsch, Introduction to Fluid Mechanics, 5th ed., Wiley, 2012.
    [79] J. Stewart, Essential Calculus, 2nd ed., Cengage Learning, 2012.
    [80] J. D. Anderson, Introduction to Flight, 8th ed., McGraw-Hill, 2016.
    [81] Y. A. Cengel and M. A. Boles, Thermodynamics: an Engineering Approach, 6th ed., McGraw-Hill, 2007.
    [82] S. Balakrishnan, A. Tsourdos, and B. A. White, Advances in Missile Guidance, Control, and Estimation., CRC Press, 2016.
    [83] 蔡林留,飛彈導引控制系統,天工書局,1989。
    [84] H. S. Ju and C. C. Tsai, “Longitudinal axis flight control law design by adaptive backstepping,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 1, pp. 311-329, 2007.
    [85] L. Sonneveldt, Q. Chu, and J. Mulder, “Nonlinear flight control design using constrained adaptive backstepping,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 2, pp. 322-336, 2007.
    [86] T. Lee and Y. Kim, “Nonlinear adaptive flight control using backstepping and neural networks controller,” Journal of Guidance, Control, and Dynamics, vol. 24, no. 4, pp. 675-682, 2001.
    [87] J. J. Bertin and M. L. Smith, Aerodynamics for Engineers, 5th ed. Prentice Hall, 2009.

    QR CODE