簡易檢索 / 詳目顯示

研究生: 盧思蓓
Si-Bei Lu
論文名稱: 以次臨界水萃取磷石膏中之稀土元素
Recovery of Rare Earth Elements from Phosphogypsum Using Subcritical Water Extraction
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧洋
Young Ku
王丞浩
Chen-Hao Wang
李連智
Jenni Lie
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 104
中文關鍵詞: 酸萃取磷石膏稀土元素次臨界水萃取工業副產物
外文關鍵詞: Acid leaching, Phosphogypsum (PG), Rare earth elements (REEs), Subcritical water extraction (SWE), Industrial waste
相關次數: 點閱:257下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著稀土元素的需求大幅增加,尋找新的次級來源和發展有效且環保的萃取技術是全球重要的議題。磷石膏作為肥料工業中的主要副產物,雖然僅擁有微量的稀土元素,然而每年可觀的生產量可以讓磷石膏成為回收稀土元素的重要供給來源。因此,從磷石膏中回收稀土元素不但有機會降低全球供應風險,還能減少長期存放磷石膏所造成的環境問題。
    本研究探討次臨界水萃取技術應用於自磷石膏中回收稀土元素,其中我們探討參數包括酸種類、酸濃度、固液比、反應時間和反應時間對於磷石膏中釔、鑭、鈰和釹的萃取影響,並與傳統萃取方法比較萃取效率和能源消耗。實驗結果顯示,萃取效率隨著濃度增加和固液比減少而增加,反應溫度和反應時間增加會造成石膏轉換為硬石膏並降低萃取效率。使用0.1 N 鹽酸、固液比10 g/L、100°C、反應5分鐘時,自磷石膏中萃取釔、鑭、鈰和釹的效率最高,分別為100.36%, 97.50%, 100.06% 和96.58%,每公斤總消耗能量為4.2×106千焦耳。相較於傳統萃取,次臨界水萃取同時擁有低耗能和高效率的優點,是一種極具競爭力的綠色技術。


    The significant increase demand for rare earth elements (REEs), making the search of new secondary sources and the development of effective and environmentally friendly extraction methods be considered as important global issue. As the main by-product in the production of fertilizer, although phosphogypsum (PG) only has trace amounts of REEs, the considerable annual production makes PG an important source for REEs recovery. Therefore, recover REEs from PG not only reduce the global supply risk, but also reduce the environmental problems caused by long-term storage.
    This study put the emphasis on the leaching efficiency of REEs, including yttrium (Y), lanthanum (La), cerium (Ce) and neodymium (Nd), from PG utilizing subcritical water extraction (SWE). The effects of acid type, acid concentration, solid to liquid ratio, reaction temperature, and reaction time on REEs from PG were investigated. The leaching efficiency increased with increasing acid concentration and decreasing S/L. The reaction temperature and reaction time could cause the transformation of gypsum to anhydrite, and affect the leaching efficiency of REEs. The experimental results of SWE, conducted at 0.1 N HCl, 10 g/L, 100°C, and reaction for 5 min, has the best leaching efficiency, 100.36% of Y, 97.50% of La, 100.06% of Ce and 96.58% of Nd, respectively. The leaching efficiency and energy consumption were compared with conventional extraction. And the total energy consumption in SWE is 4.2×106 kJ/kg. From the comparison, SWE could be a highly competitive green technology which is more effective and energy-efficient than conventional extraction.

    摘要 I ABSTRACT II ACKNOWLEDGEMENT III OUTLINE IV LIST OF FIGURES VI LIST OF TABLES VIII CHAPTER 1 INTRODUCTION 1-1 1.1 Background 1-1 1.2 Objectives of study 1-2 CHAPTER 2 LITERATURE REVIEW 2-1 2.1 Rare Earth Elements (REEs) 2-1 2.2 Phosphogypsum (PG) 2-4 2.3 Recovery of REEs from Phosphogypsum 2-6 2.4 Subcritical Water Extraction (SWE) 2-11 CHAPTER 3 MATERIALS AND METHODS 3-1 3.1 Materials and Regents 3-1 3.2 Instruments 3-1 3.3 Experimental Methods 3-3 3.3.1 Experimental Framework and Procedures 3-3 3.3.2 Characterization of Phosphogypsum 3-5 3.3.3 Subcritical Water Extraction (SWE) 3-8 3.3.4 Conventional Extraction 3-9 3.4 Thermodynamic modeling software (PHREEQC) 3-10 CHAPTER 4 RESULTS AND DISCUSSION 4-1 4.1 Characterizations of Phosphogypsum 4-1 4.1.1 Qualitative and Semi-quantitative Analysis 4-1 4.1.2 Quantitative Analysis 4-4 4.2 Subcritical Water Extraction 4-8 4.2.1 Effect of Acid Type 4-8 4.2.2 Effect of Acid Concentration 4-10 4.2.3 Effect of Solid to Liquid Ratio (S/L) 4-11 4.2.4 Effect of Reaction Temperature 4-12 4.2.5 Effect of Reaction Time 4-14 4.3 Conventional Extraction 4-15 4.4 Evaluation of Energy Consumption 4-20 4.4.1 Energy Consumption Evaluation of SWE 4-20 4.4.2 Energy Consumption Evaluation of Conventional Extraction 4-21 4.4.3 Comparison of Conventional Extraction and SWE 4-22 CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 5-1 5.1 Conclusion 5-1 5.2 Recommendations 5-2 REFERENCES 1 APPENDIX 1 Calibration Curve of ICP-OES 1 Crystalline Phase Database of Diffrac Eva V.4.3 6 Subcritical Water Extraction Results 10 Conventional Extraction Results 12 Shrinking Core Model 13 Precipitation 17 PHREEQC Coding 22

    Akcil, A., Ibrahim, Y. A., Meshram, P., & Panda, S. (2021). Hydrometallurgical recycling strategies for recovery of rare earth elements from consumer electronic scraps: a review. Journal of Chemical Technology & Biotechnology, 96(7), 1785-1797. https://doi.org/10.1002/jctb.6739
    Al-Thyabat, S., & Zhang, P. (2015). REE extraction from phosphoric acid, phosphoric acid sludge, and phosphogypsum. Mineral Processing and Extractive Metallurgy, 124(3), 143-150. https://doi.org/10.1179/1743285515y.0000000002
    Antonick, P. J., Hu, Z., Fujita, Y., Reed, D. W., Das, G., Wu, L., Shivaramaiah, R., Kim, P., Eslamimanesh, A., Lencka, M. M., Jiao, Y., Anderko, A., Navrotsky, A., & Riman, R. E. (2019). Bio- and mineral acid leaching of rare earth elements from synthetic phosphogypsum. The Journal of Chemical Thermodynamics, 132, 491-496. https://doi.org/10.1016/j.jct.2018.12.034
    Azimi, G., & Papangelakis, V. G. (2010). Thermodynamic modeling and experimental measurement of calcium sulfate in complex aqueous solutions. Fluid Phase Equilibria, 290(1-2), 88-94. https://doi.org/10.1016/j.fluid.2009.09.023
    Azimi, G., & Papangelakis, V. G. (2011). Mechanism and kinetics of gypsum–anhydrite transformation in aqueous electrolyte solutions. Hydrometallurgy, 108(1-2), 122-129. https://doi.org/10.1016/j.hydromet.2011.03.007
    Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285-1303. https://doi.org/10.1016/j.gsf.2018.12.005
    Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., & Pontikes, Y. (2015). Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. Journal of Cleaner Production, 99, 17-38. https://doi.org/10.1016/j.jclepro.2015.02.089
    Blengini, G., Latunussa, C., Eynard, U., Matos, C., Georgitzikis, K., Pavel, C., Carrara, S., Mancini, L., Unguru, M., Blagoeva, D., Mathieux, F., & Pennington, D. (2020). Study on the EU's list of Critical Raw Materials (2020) Final Report. https://doi.org/10.2873/11619
    Chen, Z., Zheng, Z., He, C., Liu, J., Zhang, R., & Chen, Q. (2022). Oily sludge treatment in subcritical and supercritical water: A review. Journal of Hazardous Materials, 433, 128761. https://doi.org/10.1016/j.jhazmat.2022.128761
    Chernysh, Y., Yakhnenko, O., Chubur, V., & Roubík, H. (2021). Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Applied Sciences, 11(4). https://doi.org/10.3390/app11041575
    Cánovas, C. R., Chapron, S., Arrachart, G., & Pellet-Rostaing, S. (2019). Leaching of rare earth elements (REEs) and impurities from phosphogypsum: A preliminary insight for further recovery of critical raw materials. Journal of Cleaner Production, 219, 225-235. https://doi.org/10.1016/j.jclepro.2019.02.104
    Costis, S., Mueller, K. K., Coudert, L., Neculita, C. M., Reynier, N., & Blais, J.-F. (2021). Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies. Journal of Geochemical Exploration, 221. https://doi.org/10.1016/j.gexplo.2020.106699
    Dushyantha, N., Batapola, N., Ilankoon, I. M. S. K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., & Dissanayake, K. (2020). The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122. https://doi.org/10.1016/j.oregeorev.2020.103521
    Dutta, T., Kim, K. H., Uchimiya, M., Kwon, E. E., Jeon, B. H., Deep, A., & Yun, S. T. (2016). Global demand for rare earth resources and strategies for green mining. Environmental Research, 150, 182-190. https://doi.org/10.1016/j.envres.2016.05.052
    Firsching, F. H., & Brune, S. N. (1991). Solubility products of the trivalent rare-earth phosphates. Journal of Chemical & Engineering Data, 36(1), 93-95. https://doi.org/10.1021/je00001a028
    Gaustad, G., Williams, E., & Leader, A. (2021). Rare earth metals from secondary sources: Review of potential supply from waste and byproducts. Resources, Conservation and Recycling, 167. https://doi.org/10.1016/j.resconrec.2020.105213
    Hammas-Nasri, I., Horchani-Naifer, K., Férid, M., & Barca, D. (2016). Rare earths concentration from phosphogypsum waste by two-step leaching method. International Journal of Mineral Processing, 149, 78-83. https://doi.org/10.1016/j.minpro.2016.02.011
    Ismail, Z., Elgoud, E. M., Hai, F., Ali, I., & Aly, H. (2015). Leaching of Some Lanthanides from Phosphogypsum Fertilizers by Mineral Acids. Arab Journal pf Nuclear Science and Applications, 48(2), 37-50.
    Jha, M. K., Kumari, A., Panda, R., Rajesh Kumar, J., Yoo, K., & Lee, J. Y. (2016). Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy, 161. https://doi.org/10.1016/j.hydromet.2016.01.003
    Jowitt, S. M. (2022). Mineral economics of the rare-earth elements. MRS Bulletin. https://doi.org/10.1557/s43577-022-00289-3
    Khan, M. I. H., Rana, M., Nshizirungu, T., Jo, Y. T., & Park, J.-H. (2022). Recovery of Valuable and Hazardous Metals (Ni, Co, and Cd) from Spent Ni–Cd Batteries Using Polyvinyl Chloride (PVC) in Subcritical Water. ACS Sustainable Chemistry & Engineering, 10(7), 2368-2379. https://doi.org/10.1021/acssuschemeng.1c06652
    Klimchouk, A. (1996). Dissolution and Conversions of Gypsum and Anhydrite. International Journal of Speleology, (25), 21-36. http://doi.org/10.5038/1827-806X.25.3.2
    Lambert, A., Anawati, J., Walawalkar, M., Tam, J., & Azimi, G. (2018). Innovative Application of Microwave Treatment for Recovering of Rare Earth Elements from Phosphogypsum. ACS Sustainable Chemistry & Engineering, 6(12), 16471-16481. https://doi.org/10.1021/acssuschemeng.8b03588
    Li, S., Malik, M., & Azimi, G. (2022). Extraction of Rare Earth Elements from Phosphogypsum Using Mineral Acids: Process Development and Mechanistic Investigation. Industrial & Engineering Chemistry Research, 61(1), 102-114. https://doi.org/10.1021/acs.iecr.1c03576
    Lie, J., Lin, Y.-C., & Liu, J.-C. (2021). Process intensification for valuable metals leaching from spent NiMH batteries. Chemical Engineering and Processing - Process Intensification, 167. https://doi.org/10.1016/j.cep.2021.108507
    Lie, J., Tanda, S., & Liu, J. C. (2020). Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries. Molecules, 25(9). https://doi.org/10.3390/molecules25092166
    Lin, E. Y., Rahmawati, A., Ko, J.-H., & Liu, J.-C. (2018). Extraction of yttrium and europium from waste cathode-ray tube (CRT) phosphor by subcritical water. Separation and Purification Technology, 192, 166-175. https://doi.org/10.1016/j.seppur.2017.10.004
    Lokshin, E. P., Tareeva, O. A., Ivlev, K. G., & Kashulina, T. G. (2005). Solubility of Double Alkali Metal (Na, K) Rare-Earth (La, Ce) Sulfates in Sulfuric-Phosphoric Acid Solutions at 20°C. Russian Journal of Applied Chemistry, 78(7), 1058-1063. https://doi.org/10.1007/s11167-005-0449-y
    Lokshin, E. P., Tareeva, O. A., & Kashulina, T. G. (2007). A study of the solubility of yttrium, praseodymium, neodymium, and gadolinium sulfates in the presence of sodium and potassium in sulfuric-phosphoric acid solutions at 20°C. Russian Journal of Applied Chemistry, 80(8), 1275-1280. https://doi.org/10.1134/S1070427207080022
    Lutke, S. F., Oliveira, M. L. S., Waechter, S. R., Silva, L. F. O., Cadaval, T. R. S., Jr., Duarte, F. A., & Dotto, G. L. (2022). Leaching of rare earth elements from phosphogypsum. Chemosphere, 301, 134661. https://doi.org/10.1016/j.chemosphere.2022.134661
    Mashifana, T., Ntuli, F., & Okonta, F. (2019). Leaching kinetics on the removal of phosphorus from waste phosphogypsum by application of shrinking core model. South African Journal of Chemical Engineering, 27, 1-6. https://doi.org/10.1016/j.sajce.2018.11.001
    Masmoudi-Soussi, A., Hammas-Nasri, I., Horchani-Naifer, K., & Férid, M. (2019). Study of Rare Earths Leaching After Hydrothermal Conversion of Phosphogypsum. Chemistry Africa, 2(3), 415-422. https://doi.org/10.1007/s42250-019-00048-z
    Masmoudi-Soussi, A., Hammas-Nasri, I., Horchani-Naifer, K., & Férid, M. (2020). Rare earths recovery by fractional precipitation from a sulfuric leach liquor obtained after phosphogypsum processing. Hydrometallurgy, 191. https://doi.org/10.1016/j.hydromet.2020.105253
    Meshram, P., & Abhilash. (2019). Recovery and Recycling of Cerium from Primary and Secondary Resources- a Critical Review. Mineral Processing and Extractive Metallurgy Review, 41(4), 279-310. https://doi.org/10.1080/08827508.2019.1677647
    Mukaba, J.-L., Eze, C. P., Pereao, O., & Petrik, L. F. (2021). Rare Earths’ Recovery from Phosphogypsum: An Overview on Direct and Indirect Leaching Techniques. Minerals, 11(10). https://doi.org/10.3390/min11101051
    Park, J. S., Roy, V. C., Kim, S. Y., Lee, S. C., & Chun, B. S. (2022). Extraction of edible oils and amino acids from eel by-products using clean compressed solvents: An approach of complete valorization. Food Chemistry, 388, 132949. https://doi.org/10.1016/j.foodchem.2022.132949
    Plaza, M., & Turner, C. (2015). Pressurized hot water extraction of bioactives. TrAC Trends in Analytical Chemistry, 71, 39-54. https://doi.org/10.1016/j.trac.2015.02.022
    Puigdomenech, I. (2010). MEDUSA.
    Rychkov, V. N., Kirillov, E. V., Kirillov, S. V., Semenishchev, V. S., Bunkov, G. M., Botalov, M. S., Smyshlyaev, D. V., & Malyshev, A. S. (2018). Recovery of rare earth elements from phosphogypsum. Journal of Cleaner Production, 196, 674-681. https://doi.org/10.1016/j.jclepro.2018.06.114
    Saravana, P. S., & Chun, B. S. (2017). Seaweed Polysaccharide Isolation Using Subcritical Water Hydrolysis. Seaweed Polysaccharides (pp. 47-73). https://doi.org/10.1016/b978-0-12-809816-5.00004-9
    Shen, L., Sippola, H., Li, X., Lindberg, D., & Taskinen, P. (2019). Thermodynamic Modeling of Calcium Sulfate Hydrates in the CaSO4-H2O System from 273.15 to 473.15 K with Extension to 548.15 K. Journal of Chemical & Engineering Date, 64(6), 2697-2709. https://doi.org/10.1021/acs.jced.9b00112
    Silva, L. F. O., Oliveira, M. L. S., Crissien, T. J., Santosh, M., Bolivar, J., Shao, L., Dotto, G. L., Gasparotto, J., & Schindler, M. (2022). A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles. Chemosphere, 286(Pt 1), 131513. https://doi.org/10.1016/j.chemosphere.2021.131513
    United State Geological Survey. (2021). Miner commodity summeries 2021.
    Van Grieken, R., & Markowicz, A. (2001). Handbook of X-Ray Spectrometry, Second Edition. Marcel Dekker.
    Van Santen, R. A. (1984). The Ostwald step rule. The Journal of Physical Chemistry, 88(24), 5768-5769. https://doi.org/10.1021/j150668a002
    Walawalkar, M., Nichol, C. K., & Azimi, G. (2016a). An Innovative Process for the Recovery of Consumed Acid in Rare-Earth Elements Leaching from Phosphogypsum. Industrial & Engineering Chemistry Research, 55(48), 12309-12316. https://doi.org/10.1021/acs.iecr.6b03357
    Walawalkar, M., Nichol, C. K., & Azimi, G. (2016b). Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4. Hydrometallurgy, 166, 195-204. https://doi.org/10.1016/j.hydromet.2016.06.008
    Wang, J., Guo, M., Liu, M., & Wei, X. (2020). Long-term outlook for global rare earth production. Resources Policy, 65. https://doi.org/10.1016/j.resourpol.2019.101569
    Wu, S., Wang, L., Zhao, L., Zhang, P., El-Shall, H., Moudgil, B., Huang, X., & Zhang, L. (2018). Recovery of rare earth elements from phosphate rock by hydrometallurgical processes – A critical review. Chemical Engineering Journal, 335, 774-800. https://doi.org/10.1016/j.cej.2017.10.143
    Yabalak, E., & Gizir, M. (2013). Subcritical and supercritical fluid extraction of heavy metals from sand and sewage sludge. Journal of the Serbian Chemical Society, 78(7), 1013-1022. https://doi.org/10.2298/jsc120321123y
    Zhang, J., Wen, C., Zhang, H., Duan, Y., & Ma, H. (2020). Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science & Technology, 95, 183-195. https://doi.org/10.1016/j.tifs.2019.11.018

    QR CODE