簡易檢索 / 詳目顯示

研究生: 張中銓
Chung-Chuan Chang
論文名稱: 奈米氧化物對具多孔性陽極氧化鋁膜之藍寶石基板的光學特性影響
Effect of Nanometer Oxide on the Optical Properties of Sapphire Substrate with Porous Anodic Aluminum Oxide Film
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 丘群
Chun Chiu
陳士勛
Shih-Hsun Chen
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 真空濺鍍陽極氧化藍寶石多孔性氧化鋁薄膜氧化亞錫可見光性質
外文關鍵詞: Sputtering, Anodizing, Sapphire, Porous alumina film, Stannous oxide, Visible light properties
相關次數: 點閱:271下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用磁控濺鍍以及陽極氧化法在單晶藍寶石基板上製作具有奈米孔洞陣列結構的氧化鋁薄膜(AAO),並在其表面沉積金屬錫與一氧化錫來改變可見光的透射和反射行為,造成原本是無色透明的藍寶石試片顏色改變,為後續應用的延伸作為基礎。
實驗以單晶藍寶石作為基板,利用磁控濺鍍法在其表面濺鍍一層金屬鋁薄膜,接著以磷酸與草酸兩種不同的電解液利用陽極氧化法將鋁薄膜轉化成具有奈米孔洞陣列的氧化鋁。然後將不同比例的金屬錫利用磁控濺鍍法沉積在其表面並將其退火成氧化亞錫。在薄膜結構鑑定方面利用X光繞射儀、場發掃描式電子顯微鏡以及奈米壓痕儀等分析工具鑑定材料,在薄膜電性方面利用四點探針測量鋁膜片電阻以判定薄膜品質,並利用百格測試法測量薄膜於基材的附著度。最後利用可見光譜儀量測試片在陽極氧化後、濺鍍錫後與錫退火成氧化亞錫後的穿透和反射的可見光譜變化,與其在肉眼觀察下的顏色做對照。
經由百格測試與奈米壓痕儀量測下得知,在工作氣壓為3 mTorr下的鋁薄膜擁有最佳附著度。透過場發掃描式電子顯微鏡的測量下得知,由草酸形成之AAO孔洞大小約為50 nm,對於可見光的繞射現象表現並不明顯濺鍍錫時,錫原子幾乎僅沉積在其表面;而由磷酸形成的AAO孔洞孔徑約為200 nm,使得入射光在波長400 nm下產生相消性干涉,孔洞大小足以使錫原子沉積在孔洞內部。經由可見光光譜儀測量下得知,在其餘濺鍍參數固定下濺鍍5分鐘,錫原子的量足夠對於薄膜產生可見光的影響且不會完全封住AAO所形成之孔洞,並在形成氧化亞錫之後對於透射與反射光譜產生多個波峰的波型變化,於外觀亦產生明顯的顏色變化。


In this study, anodized aluminum oxide film (AAO) with nanopore arrays structure was fabricated on single-crystal sapphire substrate by magnetron sputtering and anodic oxidation. Tin and tin oxide were deposited on the surface to change the transmission and reflection of visible light , Making the colorless and transparent sapphire substrate color change, the extension of the application.
Through the adhesion cross-cut test and the nanoindenter measurement, we found that the aluminum film has the best adhesion at a working pressure of 3 mTorr. Through the field emission scanning electron microscope measurement, the AAO hole size formed by oxalic acid is about 50 nm, which is not obvious for the diffraction phenomenon of visible light. The tin atoms are almost only deposited on the surface when tin is sputtered. The pore diameter of AAO formed by phosphoric acid is about 200 nm, which makes the incident light destructively interfere with the wavelength of 400 nm. The size of the holes is enough to make the tin atoms deposited inside the holes. After the visible spectrum measured via known, sputtering under five minutes, the amount of tin atoms sufficient to modify the results of the visible spectrum and does not completely seal the holes, and forming a plurality of peaks generated stannous oxide to the transmission and reflection spectra Wave pattern changes, the appearance also had a significant color change.

誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XII 第1章 序論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機 3 第2章 文獻回顧 4 2.1 藍寶石 4 2.1.1單晶藍寶石特性 5 2.1.2藍寶石基板之應用 8 2.2 物理氣相沉積技術(Physical Vapor Deposition,PVD) 9 2.2.1濺鍍技術(Sputtering Deposition) 9 2.2.2電漿技術 10 2.2.3真空濺鍍技術 19 2.3 陽極氧化鋁(Anodic Aluminum Oxide, AAO) 22 2.3.1陽極氧化鋁發展 22 2.3.2多孔性陽極氧化鋁成長機制 23 2.3.3 多孔性氧化鋁膜之相關研究 28 第3章 實驗設備、製程與檢驗儀器 36 3.1 實驗目的 36 3.2 實驗儀器、藥品、耗材 37 3.3 實驗步驟 40 3.3.1 基材準備 40 3.3.2 表面處理 40 3.3.3 實驗參數 42 3.3.4 實驗分析及儀器原理 44 第4章 結果與討論 48 4.1 鋁膜表面形貌與橫截面觀察 48 4.2 鋁膜附著性測試與表面導電度測試 50 4.3 第一次陽極氧化 52 4.4 第二次陽極氧化 54 4.4.1 表面形貌與橫截面觀察 55 4.4.2 外觀與光學檢測 58 4.5 濺鍍錫之分析 61 4.5.1 表面形貌與橫截面觀察 61 4.5.2 外觀與光學檢測 68 4.6 氧化亞錫之分析 73 4.6.1 表面結構觀察與XRD檢測 73 4.6.2 外觀與光學檢測 82 4.7 陽極氧化與薄膜沉積機制分析 87 第5章 結論與未來展望 88 5.1 結論 88 5.2 未來展望 89 第6章 參考文獻 90

1. Dobrovinskaya, E. R., Lytvynov, L. A., & Pishchik, V. (2009). Sapphire: material, manufacturing, applications. Springer Science & Business Media.
2. 吳盈潔. (2014). 2015年全球藍寶石與LED市場報告. LEDinside.
3. Thompson, G. E., & Wood, G. C. (1981). Porous anodic film formation on aluminium. Nature, 290(5803), 230.
4. Lee, W., Ji, R., Gösele, U., & Nielsch, K. (2006). Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature materials, 5(9), 741.
5. Schwirn, K., Lee, W., Hillebrand, R., Steinhart, M., Nielsch, K., & Gösele, U. (2008). Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. Acs Nano, 2(2), 302-310.
6. Shaban, M., Hamdy, H., Shahin, F., Park, J., & Ryu, S. W. (2010). Uniform and reproducible barrier layer removal of porous anodic alumina membrane. Journal of nanoscience and nanotechnology, 10(5), 3380-3384.
7. O'sullivan, J. P., & Wood, G. C. (1970, July). The morphology and mechanism of formation of porous anodic films on aluminium. In Proc. R. Soc. Lond. A (Vol. 317, No. 1531, pp. 511-543). The Royal Society.
8. Masuda, H., & Fukuda, K. (1995). Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. science, 268(5216), 1466-1468.
9. 劉如熹、辛嘉芬、陳浩銘. (民97). 奈米材料的製作與應用-陽極氧化鋁膜及奈米線製作技術. 全華圖書.
10. Vorobyova, A. I. & Outkina, E. A. (1998). Study of pillar microstructure formation with anodic oxides. Thin Solid Films. 324, 1-10.
11. Sander, M. S., & Tan, L. S. (2003). Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates. Advanced functional materials, 13(5), 393-397.
12. Zhao, G. Y., Xu, C. L., Guo, D. J., Li, H., & Li, H. L. (2006). Template preparation of Pt–Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation. Journal of Power Sources, 162(1), 492-496.
13. Shimizu, T., Nagayanagi, M., Ishida, T., Sakata, O., Oku, T., Sakaue, H., ... & Shingubara, S. (2006). Epitaxial growth of Cu nanodot arrays using an AAO template on a Si substrate. Electrochemical and solid-state letters, 9(4), J13-J16.
14. Kokonou, M., Nassiopoulou, A. G., Giannakopoulos, K. P., Travlos, A., Stoica, T., & Kennou, S. (2006). Growth and characterization of high density stoichiometric SiO2 dot arrays on Si through an anodic porous alumina template. Nanotechnology, 17(9), 2146.
15. Yang, C. J., Wang, S. M., Liang, S. W., Chang, Y. H., Chen, C., & Shieh, J. M. (2007). Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition. Applied physics letters, 90(3), 033104.
16. Taşaltın, N., Öztürk, S., Kılınç, N., Yüzer, H., & Öztürk, Z. Z. (2009). Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions. Applied Physics A, 95(3), 781-787.
17. Lai, C. H., Chang, C. W., & Tseng, T. Y. (2010). Size-dependent field-emission characteristics of ZnO nanowires grown by porous anodic aluminum oxide templates assistance. Thin Solid Films, 518(24), 7283-7286.
18. Jin, X., Hu, Y., Wang, Y., Shen, R., Ye, Y., Wu, L., & Wang, S. (2012). Template-based synthesis of Ni nanorods on silicon substrate. Applied Surface Science, 258(7), 2977-2981.
19. Fu, J., Mao, P., & Han, J. (2008). Artificial molecular sieves and filters: a new paradigm for biomolecule separation. Trends in biotechnology, 26(6), 311-320.
20. Hurst, S. J., Payne, E. K., Qin, L., & Mirkin, C. A. (2006). Multisegmented one‐dimensional nanorods prepared by hard‐template synthetic methods. Angewandte Chemie International Edition, 45(17), 2672-2692.
21. Lai, M., & Riley, D. J. (2008). Templated electrosynthesis of nanomaterials and porous structures. Journal of colloid and interface science, 323(2), 203-212.
22. Cauda, V., Stassi, S., Bejtka, K., & Canavese, G. (2013). Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS applied materials & interfaces, 5(13), 6430-6437.
23. Wirtz, M., Yu, S., & Martin, C. R. (2002). Template synthesized gold nanotube membranes for chemical separations and sensing. Analyst, 127(7), 871-879.
24. Mu, C., Zhang, J. P., & Xu, D. (2009). Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology, 21(1), 015604.
25. Bae, C., Yoo, H., Kim, S., Lee, K., Kim, J., Sung, M. M., & Shin, H. (2008). Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications. Chemistry of Materials, 20(3), 756-767.
26. Ottone, C., Bejtka, K., Chiodoni, A., Farías, V., Roppolo, I., Canavese, G., ... & Cauda, V. (2014). Comprehensive study of the templating effect on the ZnO nanostructure formation within porous hard membranes. New Journal of Chemistry, 38(5), 2058-2065.
27. Gabrielli, L. H., Cardenas, J., Poitras, C. B., & Lipson, M. (2009). Silicon nanostructure cloak operating at optical frequencies. Nature photonics, 3(8), 461.
28. Lau, K. H. A., Tan, L. S., Tamada, K., Sander, M. S., & Knoll, W. (2004). Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study. The Journal of Physical Chemistry B, 108(30), 10812-10818.
29. Lazzara, T. D., Aaron Lau, K. H., & Knoll, W. (2010). Mounted nanoporous anodic alumina thin films as planar optical waveguides. Journal of nanoscience and nanotechnology, 10(7), 4293-4299.
30. Saito, M., & Miyagi, M. (1989). Anisotropic optical loss and birefringence of anodized alumina film. JOSA A, 6(12), 1895-1900.
31. Wang, J., Wang, C. W., Li, Y., & Liu, W. M. (2008). Optical constants of anodic aluminum oxide films formed in oxalic acid solution. Thin Solid Films, 516(21), 7689-7694.
32. De Laet, J., Terryn, H., & Vereecken, J. (1998). Development of an optical model for steady state porous anodic films on aluminium formed in phosphoric acid. Thin Solid Films, 320(2), 241-252.
33. Jung, Y. W., Byun, J. S., Woo, D. H., & Kim, Y. D. (2009). Ellipsometric analysis of porous anodized aluminum oxide films. Thin Solid Films, 517(13), 3726-3730.
34. 雷岩、谷龙艳、贾会敏、杨晓刚、杨健康、郑露露、郑直、褚君浩. (2015). 一种大面积合成氧化亚锡半导体光电薄膜材料的方法, CN104934490 A.
35. 吳忠幟,林樹均. (民100). p型氧化物半導體與薄膜電晶體研究. 行政院國家科學委員會補助產學合作研究計畫成果精簡報告, NSC 99-2622-E-002-009-CC2).
36. Harris, D. C. (2003, September). A peek into the history of sapphire crystal growth. In Window and Dome Technologies VIII (Vol. 5078, pp. 1-12). International Society for Optics and Photonics.
37. 曾景祥. (2012). 藍寶石晶圓之研光加工與摩擦力分析研究. 國立臺灣科技大學碩士論文.
38. 汪建民. (1994). 陶瓷技術手冊 (上、下). 經濟部技術處.
39. 聂辉、陆炳哲. (2005). 蓝宝石及其在军用光电设备上的应用. 华中光电研究所.
40. 王筱珊. (2013). LED元件及照明應用產業發展年鑑. 光電科技工業策進會.
41. 儲于超. (2014). 全球藍寶石襯底市場趨勢. LEDinside.
42. 蕭宏. (2014). 半導體製程技術討論(第三版). 全華圖書.
43. Chapman, B. N. (1980). Glow discharge processes: sputtering and plasma etching. Wiley.
44. Bunshah, R. F. (1982). Deposition technologies for films and coatings: developments and applications. Noyes Publications.
45. Ohring, M., Zarrabian, S., & Grogan, A. (1992). The materials science of thin films. Applied Optics, 31, 7162.
46. Nenadović, T., Perraillon, B., Bogdanov, Ž., Djordjević, Z., & Milić, M. (1990). Sputtering and surface topography of oxides. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 48(1-4), 538-543.
47. Merche, D., Vandencasteele, N., & Reniers, F. (2012). Atmospheric plasmas for thin film deposition: A critical review. Thin Solid Films, 520(13), 4219-4236.
48. Bogaerts, A., Neyts, E., Gijbels, R., & van der Mullen, J. (2002). Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 609-658.
49. 劉志宏、黃駿、許文通、蔡禎輝、張所鋐. (2008). 以大氣電漿進行材料表面微米級圖案化之加工技術. 機械工業雜誌, 306,66.
50. 楊士賢. (2005). 以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究. 中原大學化學工程研究所學位論文, 1-117.
51. ROTH, J. (1995). Industrial Plasma Engineering. Institute of Physics Publishing, 1, 366-367.
52. Chapman, B. N. (1980). Glow discharge processes: sputtering and plasma etching. Wiley.
53. 洪昭南. (1995). 電漿反應器. 化工技術, 第三卷. 第三期. 124–135.
54. 陳寶清. (1992). 真空表面處理工學. 傳勝出版社.
55. Smith, D. L., & Hoffman, D. W. (1996). Thin-Film Deposition: Principles and Practice. Physics Today, 49, 60.
56. Setoh, S., & Miyata, A. (1932). Anodic film of aluminium. I and II. Sci. Pap. Inst. Phys. Chem. Res.(Jpn.), 17, 189.
57. Konno, H., Utaka, K., & Furuichi, R. (1996). A two step anodizing process of aluminium as a means for improving the chemical and physical properties of oxide films. Corrosion Science, 38(12), 2247-2256.
58. Masuda, H., Hasegwa, F., & Ono, S. (1997). Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution. Journal of the electrochemical society, 144(5), L127-L130.
59. Sulka, G. D., Stroobants, S., Moshchalkov, V., Borghs, G., & Celis, J. P. (2002). Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid. Journal of the Electrochemical Society, 149(7), D97-D103.
60. Foss Jr, C. A., Hornyak, G. L., Stockert, J. A., & Martin, C. R. (1994). Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape. The Journal of Physical Chemistry, 98(11), 2963-2971.
61. Gao, T., Meng, G., Wang, Y., Sun, S., & Zhang, L. (2001). Electrochemical synthesis of copper nanowires. Journal of Physics: Condensed Matter, 14(3), 355.
62. Jagminas, A., Bigelien, D., Mikulskas, I., & Tomašiūnas, R. (2001). Growth peculiarities of aluminum anodic oxide at high voltages in diluted phosphoric acid. Journal of crystal growth, 233(3), 591-598.
63. Stein, N., Rommelfangen, M., Hody, V., Johann, L., & Lecuire, J. M. (2002). In situ spectroscopic ellipsometric study of porous alumina film dissolution. Electrochimica acta, 47(11), 1811-1817.
64. Keller, F., Hunter, M. S., & Robinson, D. L. (1953). Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society, 100(9), 411-419.
65. Thamida, S. K., & Chang, H. C. (2002). Nanoscale pore formation dynamics during aluminum anodization. Chaos: An Interdisciplinary Journal of Nonlinear Science, 12(1), 240-251.
66. Hennesthal, C. (2003). Application Report Nano Wizard. JPK Instruments AG.
67. Li, A. P., Müller, F., Birner, A., Nielsch, K., & Gösele, U. (1998). Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. Journal of applied physics, 84(11), 6023-6026.
68. 張凱鈞, & 潘扶民. (2005). 以陽極氧化鋁輔助合成奈米碳管場發射陣列之研究(Doctoral dissertation).
69. Soserov, L., & Todorov, R. (2013). Optical properties of thin nanoporous aluminium oxide films formed by anodization. Bulgarian Chemical Communications, 45, 47-50.
70. Jeong, S. Y., An, M. C., Cho, Y. S., Kim, D. J., Paek, M. C., & Kang, K. Y. (2009). Preparation of anodic aluminum oxide templates on silicon substrates for growth of ordered nano-dot arrays. Current Applied Physics, 9(1), S101-S103.
71. Rehim, S. A., Hassan, H. H., & Amin, M. A. (2002). Galvanostatic anodization of pure Al in some aqueous acid solutions Part I: Growth kinetics, composition and morphological structure of porous and barrier-type anodic alumina films. Journal of applied electrochemistry, 32(11), 1257-1264.
72. Chiu, R. L., Chang, P. H., & Tung, C. H. (1995). The effect of anodizing temperature on anodic oxide formed on pure Al thin films. Thin Solid Films, 260(1), 47-53.
73. Hwang, S. K., Jeong, S. H., Hwang, H. Y., Lee, O. J., & Lee, K. H. (2002). Fabrication of highly ordered pore array in anodic aluminum oxide. Korean Journal of Chemical Engineering, 19(3), 467-473.
74. Wu, Z., Richter, C., & Menon, L. (2007). A study of anodization process during pore formation in nanoporous alumina templates. Journal of the Electrochemical Society, 154(1), E8-E12.
75. Han, C. Y., Willing, G. A., Xiao, Z., & Wang, H. H. (2007). Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching. Langmuir, 23(3), 1564-1568.
76. Chung, C. K., Chang, W. T., Liao, M. W., Chang, H. C., & Lee, C. T. (2011). Fabrication of enhanced anodic aluminum oxide performance at room temperatures using hybrid pulse anodization with effective cooling. Electrochimica Acta, 56(18), 6489-6497.
77. Sulka, G. D., & Parkoła, K. G. (2007). Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid. Electrochimica Acta, 52(5), 1880-1888.
78. Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R. B., & Gösele, U. (2002). Self-ordering regimes of porous alumina: the 10 porosity rule. Nano letters, 2(7), 677-680.
79. Lee, K., Tang, Y., & Ouyang, M. (2008). Self-ordered, controlled structure nanoporous membranes using constant current anodization. Nano letters, 8(12), 4624-4629.
80. Toccafondi, C., Thorat, S., La Rocca, R., Scarpellini, A., Salerno, M., Dante, S., & Das, G. (2014). Multifunctional substrates of thin porous alumina for cell biosensors. Journal of Materials Science: Materials in Medicine, 25(10), 2411-2420.
81. Rabin, O., Herz, P. R., Lin, Y. M., Akinwande, A. I., Cronin, S. B., & Dresselhaus, M. S. (2003). Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass. Advanced Functional Materials, 13(8), 631-638.
82. Crouse, D., Lo, Y. H., Miller, A. E., & Crouse, M. (2000). Self-ordered pore structure of anodized aluminum on silicon and pattern transfer. Applied Physics Letters, 76(1), 49-51.
83. Das, B., & McGinnis, S. P. (2000). Novel template-based semiconductor nanostructures and their applications. Applied Physics A, 71(6), 681-688.
84. Inoue, S., Chu, S. Z., Wada, K., Li, D., & Haneda, H. (2003). New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum. Science and Technology of Advanced Materials, 4(4), 269-276.
85. Kokonou, M., Nassiopoulou, A. G., & Giannakopoulos, K. P. (2004). Ultra-thin porous anodic alumina films with self-ordered cylindrical vertical pores on a p-type silicon substrate. Nanotechnology, 16(1), 103.
86. Shen, L., Ali, M., Gu, Z., Min, B., Kim, D., & Park, C. (2013). Preparation of anodic aluminum oxide (AAO) nano-template on silicon and its application to one-dimensional copper nano-pillar array formation. Korean Journal of Chemical Engineering, 30(1), 221-227.
87. Wu, M. T., Leu, I. C., & Hon, M. H. (2004). Anodization behavior of Al film on Si substrate with different interlayers for preparing Si-based nanoporous alumina template. Journal of materials research, 19(3), 888-895.
88. Chu, S. E., Wada, K., Inoue, S., & Todoroki, S. (2003). Fabrication and characteristics of nanostructures on glass by Al anodization and electrodeposition. Electrochimica Acta, 48(20-22), 3147-3153.
89. Chen, W., Wu, J. S., & Xia, X. H. (2008). Porous anodic alumina with continuously manipulated pore/cell size. ACS nano, 2(5), 959-965.
90. Poinern, G. E. J., Ali, N., & Fawcett, D. (2011). Progress in nano-engineered anodic aluminum oxide membrane development. Materials, 4(3), 487-526.
91. Upreti, S., Mukherjee, K., Palit, M., Bag, A., Mallik, S., Chattopadhyay, S., & Maiti, C. K. (2014). Porous anodic alumina template formation: deposition technique dependence. In Physics of Semiconductor Devices (pp. 725-728). Springer, Cham.
92. Chung, C. K., Liao, M. W., Khor, O. K., & Chang, H. C. (2013). Enhancement of pore size distribution in one-step hybrid pulse anodization of aluminum thin films sputtered on Si substrates. Thin Solid Films, 544, 374-379.
93. Ottone, C., Laurenti, M., Bejtka, K., Sanginario, A., & Cauda, V. (2014). The Effects of the Film Thickness and Roughness in the Anodization Process of Very Thin Aluminum Films. J Mater Sci Nanotechnol, 1(1), S107.
94. Chu, S. Z., Wada, K., Inoue, S., & Todoroki, S. (2002). Formation and microstructures of anodic alumina films from aluminum sputtered on glass substrate. Journal of the electrochemical Society, 149(7), B321-B327.
95. Miney, P. G., Colavita, P. E., Schiza, M. V., Priore, R. J., Haibach, F. G., & Myrick, M. L. (2003). Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support. Electrochemical and solid-state letters, 6(10), B42-B45.
96. Gong, S. H., Stolz, A., Myeong, G. H., Dogheche, E., Gokarna, A., Ryu, S. W., ... & Cho, Y. H. (2011). Effect of varying pore size of AAO films on refractive index and birefringence measured by prism coupling technique. Optics letters, 36(21), 4272-4274.
97. Zhuo, H., Peng, F., Lin, L., Qu, Y., & Lai, F. (2011). Optical properties of porous anodic aluminum oxide thin films on quartz substrates. Thin Solid Films, 519(7), 2308-2312.
98. Yin, H., Li, X., & Que, L. (2014). Fabrication and characterization of aluminum oxide thin film micropatterns on the glass substrate. Microelectronic Engineering, 128, 66-70.
99. Pashchanka, M., Yadav, S., Cottre, T., & Schneider, J. J. (2014). Porous alumina-metallic Pt/Pd, Cr or Al layered nanocoatings with fully controlled variable interference colors. Nanoscale, 6(21), 12877-12883.
100. Arslan, H. C., Yusufoglu, I., & Aslan, M. M. (2014). Structural and optical characterizations of porous anodic alumina–aluminum nanocomposite films on borofloat substrates. Optical Engineering, 53(7), 071822.
101. Saarikoski, I., Suvanto, M., & Pakkanen, T. A. (2008). Nanoporous anodized aluminum oxide-coated polycarbonate surface: Tailoring of transmittance and reflection properties. Thin Solid Films, 516(23), 8278-8281.
102. Mittal, K. L. (1976). Adhesion measurement of thin films. Active and Passive Electronic Components, 3(1), 21-42.
103. Thornton, J. A. (1974). Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 11(4), 666-670.
104. Benjamin, P., & Weaver, C. (1960, February). Measurement of adhesion of thin films. In Proc. R. Soc. Lond. A (Vol. 254, No. 1277, pp. 163-176). The Royal Society.
105. Laugier, M. (1981). Adhesion and internal stress in thin films of aluminium. Thin Solid Films, 79(1), 15-20.
106. Mody, N. R., Hwang, R. Q., Venka-Taraman, S., Angelo, J. E., Norwood, D. P., & Gerberich, W. W. (1998). Adhesion and fracture of tantalum nitride films. Acta materialia, 46(2), 585-597.
107. Moody, N. R., Medlin, D., Boehme, D., & Norwood, D. P. (1998). Film thickness effects on the fracture of tantalum nitride on aluminum nitride thin film systems. Engineering fracture mechanics, 61(1), 107-118.
108. Fodor, P. S. (2002). Study of magnetic nanostructures in hexagonally ordered porous alumina.
109. Batzill, M., & Diebold, U. (2005). The surface and materials science of tin oxide. Progress in surface science, 79(2-4), 47-154.
110. Cobine, J. D. (1958). Gaseous Conductors Dover Publications. New York.

無法下載圖示 全文公開日期 2023/07/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE