簡易檢索 / 詳目顯示

研究生: 張軒瑋
Hsuan-Wei Chang
論文名稱: 高效率返馳式轉換器設計應用於USB-PD電力傳輸器
Design of High-Efficiency Flyback Converters for Use in USB-PD Power Transmitters
指導教授: 郭明哲
Ming-Tse Kuo
口試委員: 黃仲欽
Zhong-Qin Huang
鄒明璋
Ming-Zhang Zou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 125
中文關鍵詞: 氮化鎵電晶體返馳式波谷切換開關損耗
外文關鍵詞: GaN FET, flyback, valley switching, switching loss
相關次數: 點閱:195下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現在的社會中,有各式各樣的 3C 產品有供電需求,而為了追
    求方便性,所以全世界透過設定統一化的連接埠和單一個電源供應器
    來滿足需求。一般電源轉換器都是使用返馳式轉換器,因此轉換器以
    高度隔離、簡單結構、高效率、輸出電壓調節能力和輸出過電流保護
    等優點,使其廣泛應用於各種電源轉換和隔離應用中。但因為輸出功
    率隨著負載轉換,導致效率非最佳之狀態,因此本論文設計一個返馳
    式電源轉換器,並用不同材質的半導體電晶體來改善上述的問題。
    本論文用軟體 SIMetrix/SIMPLIS 建置返馳式轉換器之模型,此
    模型電路使用邊界導通模式,具有柔性切換的特性,可以減少開關損
    耗,依照模擬的數據可作參考。在實際測量階段,分別固定輸入電壓
    為 90???、115???、230???和 264???,負載為 65W 滿載下,使用氮化
    鎵和矽兩種不同材料之半導體電晶體,發現在使用氮化鎵電晶體可使
    最高平均效率在 91.54%,和矽場效電晶體的平均效率 89.05%相比,
    效率可提升至少 2%,損失也有大幅的下降,這也證明了氮化鎵電晶
    體比矽電晶體有更好的開關性能和低開關損耗,同時因為高頻、高熱
    傳導性和高電壓耐受性等因素,讓變壓器等設備體積可以縮小,使氮
    化鎵電晶體可應用的產品和前景更加寬廣。


    In today's society, there are various 3C products that have power supply
    needs. In order to pursue convenience, the world meets the needs by setting
    unified connection ports and a single power supply. Generally, power
    converters use flyback converters, so the converters are widely used in
    various power conversion and isolation applications due to their
    advantages of high isolation, simple structure, high efficiency, output
    voltage regulation capability and output over-current protection.
    However, because the output power is converted with the load, the
    efficiency is not optimal. Therefore, this paper designs a flyback power
    converter and uses semiconductor field effect transistors of different
    materials to improve the above problems.
    This thesis uses the software SIMetrix/SIMPLIS to build a model of
    the flyback converter. This model circuit uses the boundary conduction
    mode and has the characteristics of flexible switching, which can reduce
    switching losses. The simulated data can be used as a reference. In the
    actual measurement stage, the input voltages were fixed at 90???, 115???,
    230??? and 264???, and the load was 65W at full load. Two semiconductor
    field-effect transistors made of gallium nitride and silicon were used. It was
    found that the GaN field-effect transistor The crystal can achieve the
    highest average efficiency of 91.54%. Compared with the average
    efficiency of silicon field effect transistors of 89.05%, the efficiency can
    be increased by at least 2%, and the loss is also greatly reduced. This also
    proves that GaN field effect transistors are more efficient than silicon The
    field effect transistor has better switching performance and low switching
    loss, at the same time, due to factors such as high frequency, high thermal
    conductivity and high voltage tolerance, the volume of transformers and
    other equipment can be reduced, which makes the applicable products
    and prospects of the GaN field effect transistor broader.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 符號索引 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 4 1.3 系統架構之規格與特色 7 1.4 本文大綱 9 第二章 功率因數修正與控制方法 11 2.1 前言 11 2.2 功率因數與總諧波失真 12 2.3 主動式功率因數修正電路之控制方法 18 2.3.1 連續導通模式 18 2.3.2 不連續導通模式 26 2.3.3 邊界導通模式 29 第三章 準諧振返馳式轉換器 36 3.1 前言 36 3.2 返馳式轉換器工作原理 37 3.2.1 連續導通模式 38 3.2.2 不連續導通模式 43 3.2.3 邊界連續導通模式 46 3.3 柔性切換 49 第四章 USB-PD返馳式控制電路 51 4.1 前言 51 4.2 本文控制IC介紹 51 4.3 電路主要元件參數 61 4.4 返馳式轉換器之損耗分析 64 4.4.1 損耗來源與公式推導 64 4.4.2 電路主要參數與系統模擬 69 4.4.3 模擬結果 74 第五章 系統整合之實測結果與討論 77 5.1 前言 77 5.2 系統整合之波形與效能實測 77 5.2.1 波谷切換量測波形 78 5.2.2 頻率量測波形 83 5.2.3 負載切換時間 85 5.2.4 滿載之效率實測結果 87 5.3 實測結果與損耗分析之比較 91 5.4 原型電路實體圖 93 第六章 結論與未來展望 94 6.1 結論 94 6.2 未來展望 97 參考文獻 99

    [1] M. S. Shur and R. Zukauskas, “Solid-State Lighting: Toward Superior Illumination,” Proceedings of the IEEE, vol. 93, pp. 1691-1703, 2005. http://www.designrecycleinc.com/led%20comp%20chart.html
    [2] N. Chen and H. S. H. Chung, “A Driving Technology for Retrofit LED Lamp for Fluorescent Lighting Fixtures with Electronic Ballasts,” IEEE Transactions on Power Electronics, vol. 26, pp. 588-601, 2011.
    [3] J. Cardes, D. Garc, L. a, L. E, et al., “Low Cost Intelligent LED Driver for Public Lighting Smart Grids,” in New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE), 2013 International Conference on, 2013, pp. 1-6.
    [4] D. G. Lamar, M. Arias, M. M. Hernando, and J. Sebastian, “Using the Loss-Free Resistor Concept to Design a Simple AC-DC HB-LED Driver for Retrofit Lamp Applications,” IEEE Transactions on Industry Applications, vol. 51, pp. 2300-2311, 2015.
    [5] (Jul, 2016). Comparison Chart : LED Lights vs. Incandescent Light Bulbs vs. CFLs. Available:
    [6] L. Bor-Ren, W. Ta-Chang, and C. Huann-Keng, “Novel AC Line Conditioner for Power Factor Correction,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, pp. 168-179, 2004.
    [7] F.Cau, J. Liu, and Y. Zhang, “ A switching strategy of dead-time elimination for pulse width modulation convrters,” Future Energy Electronic Conference(IFEEC), Nov.2015.
    [8] A. K. S. Bhat, “Analysis and design of a modified series resonant converter,” IEEE Transactions on Power Eletronics, vol. 8, pp.423-430,1993.
    [9] R. Oruganti, and T. C. How, “Resonant-tank control of parallel resonant converter,” IEEE Transactions on Power Eletronics, vol. 8, pp.127-134,1993.
    [10] K. H. Liu, R. Oruganti, and F. C. Y. Lee,“Quasi-Resonant Converter-Topologies and Characteristics,” IEEE Transactions on Power Eletronics, vol. PE-2, pp.66-71,1987.

    [11] R. J. Wai,C. Y. Lin, and L. W. Liu, “Voltage-clamped forword quasi-resonant converter with soft switching and reduced switch stress,” IEE Proceedings Electric Power Applications, vol. 152, pp.558-564,2005.
    [12] H. Chung, S. Y. R. Hui, and W. H. Wang, “An Isolated ZVS/ZCS Flyback Converter Using the Leakage Inductance of the Coupled Inductor,” IEEE Transactions on Industrial Electronics, vol. 45, pp. 679-682, 1998.
    [13] T. Yan, J. Xu, F. Zhang, J. Sha, and Z. Dong, “Variable-On-Time-Controlled Critical-Conduction-Mode Flyback PFC Converter,” IEEE Transactions on Industrial Electronics, vol. 61, pp. 6091-6099, 2014.
    [14] M. M. A. Aziz, E. E.-D. A. El-Zahab, A. M. Ibrahim, and A. F. Zobaa, “Effect of Connecting Shunt Capacitor on Nonlinear Load Terminals,” IEEE Transactions on Power Delivery, vol. 18, pp. 1450-1454, 2003.
    [15] 宋自恆、林慶仁,「功率因數修正電路之原理與常用元件規格」,新電子科技雜誌,第217 期,頁數:1-15,2004年4月。
    [16] 蔡右平,「高效率可調光之返馳式LED驅動器研製」,碩士論
    文,電機工程系,國立台灣科技大學,台北市,2016
    [17] D. W. Hart and S. Y. Ou, Power Electronics, Annotated ed.: McGraw-Hill, 2011.
    [18] 郭明豪,「準諧振返馳式轉換器研製」,碩士論文,電機工程系,國立臺灣科技大學,台北市,2014。
    [19] 吳義利,切換式電源轉換器 原理與實用設計技術 (實例設計導向),2 ed.: 文笙書局,2015。
    [20] “Power factor correction (PFC) handbook, Rev. 5,” ON Semiconductor, 2014.
    [21] L. Zheren and K. M. Smedley, “A Family of Continuous Conduction Mode Power Factor Correction Controllers Based on the General Pulse-Width Modulator,” IEEE Transactions on Power Electronics, vol. 13, pp. 501-510, 1998.
    [22] K. Yao, X. Ruan, X. Mao, and Z. Ye, “Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter,” IEEE Transactions on Industrial Electronics, vol. 58, pp. 1856-1865, 2011.
    [23] L. Huber, B. T. Irving, and M. M. Jovanovic, “Effect of Valley Switching and Switching-Frequency Limitation on Line-Current Distortions of DCM/CCM Boundary Boost PFC Converters,” IEEE Transactions on Power Electronics, vol. 24, pp. 339-347, 2009.
    [24] L. Rossetto, G. Spiazzi, and P. Tenti, “Control Techniques for Power Factor Correction Converter,” In Proc. PEMC, pp. 1310-1318, Sept 1994.
    [25] D. W. Hart and S. Y. Ou, Power Eletronics, Annotated ed.:McGraw-Hill,2011.
    [26] T.Halder, “Synthesis of Hard and Soft Switching Skills of The MOSFET With the Flyback Converters,” IEEE Delhi Section Conference,2022
    [27] J. Zhang, H. Zeng, and X. Wu, “An Adaptive Blanking Time Control Scheme for an Audible Noise-Free Quasi-Resonant Flyback Converter,” IEEE Transactions on Power Electronics, vol. 26, pp. 2735-2742, 2011.
    [28] W. Huai and I. Batarseh, “Comparison of Basic Converter Topologies for Power Factor Correction,” in Southeastcon '98. Proceedings. IEEE, 1998, pp. 348-353.
    [29] X. Xie, J. Wang, C. Zhao, Q. Lu, and S. Liu, “A Novel Output Current Estimation and Regulation Circuit for Primary Side Controlled High Power Factor Single-Stage Flyback LED Driver,” IEEE Transactions on Power Electronics, vol. 27, pp. 4602-4612, 2012.
    [30] W. Hongmin, L. Zhili, and D. Jing, “High-Power LED Constant-Current Driver Circuit Design and Efficiency Analysis,” in Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2011, 2011, pp. 705-710.
    [31] C. Chang, Y. Xu, B. Bian, and X. Zhao, “A High-Precision CV/CC AC-DC Converter Based on Cable and Inductance Compensation Schemes,” IEEE Transactions on Power Electronics, vol. 31, pp. 6372-6382, 2016.
    [32] D. Gacio, J. M. Alonso, J. Garcia, L. Campa, M. J. Crespo, and M. Rico-Secades, “PWM Series Dimming for Slow-Dynamics HPF LED Drivers: the High-Frequency Approach,” IEEE Transactions on Industrial Electronics, vol. 59, pp. 1717-1727, 2012.
    [33] 陳彥衛,「新型效率修正轉換器設計應用於Type-C型電力傳輸控制器」,碩士論文,電機工程系,國立臺灣科技大學,台北市,2017。
    [34] C. Qiao and K. M. Smedley, “A Topology Survey of Single-Stage Power Factor Corrector with a Boost Type Input-Current-Shaper,” IEEE Trans. Power Electron., vol. 16, no. 3, pp. 360-368, 2001.Y. Hu, L. Huber, M. M. Jovanovi, and x, “Single-Stage, Universal-Input AC/DC LED Driver with Current-Controlled Variable PFC Boost Inductor,” IEEE Transactions on Power Electronics, vol. 27, pp. 1579-1588, 2012.
    [35] G. A. Karveis, and S.N. Manias, “Analysis and Design of a Flyback Zero-Current Switched Quasi-Resonant AC/DC Converter,” IEEE Power Electronics Specialists Conference, vo1. 1, pp. 475-480, Jun. 1996.
    [36] D. Gacio, J. M. Alonso, A. J. Calleja, J. Garcia, and M. Rico-Secades, “A Universal-Input Single-Stage High-Power-Factor Power Supply for HB-LEDs Based on Integrated Buck-Flyback Converter,” IEEE Transactions on Industrial Electronics, vol. 58, pp. 589-599, 2011.
    [37] C. A. Cheng, C. H. Chang, T. Y. Chung, and F. L. Yang, “Design and Implementation of a Single-Stage Driver for Supplying an LED Street-Lighting Module with Power Factor Corrections,” IEEE Transactions on Power Electronics, vol. 30, pp. 956-966, 2015.
    [38] STMicroelectronics, “Design Equations of High-Power-Factor Flyback Converters Based On the L6561,” Application Note, AN1059, September 2003.
    [39] Mladen Ivankovic, Infineon Technologies North America (IFNA) Corp, “CrCM Flyback PFC Converter Design,” Design Note, V1.0, January 2013.
    [40] T. Halder, “Synthesis of Hard and Soft Switching Skills of The MOSFET With the Flyback Converters,” IEEE Delhi Section Conference, 2022.
    [41] Leadtrend Technology Corporation, LD7830 Datasheet, Rev. 01a, Aug. 2012.
    [42] L. Yang, X. Zhou, and A. Huang, “Design of a Transition Mode Controller for Flyback Converters,” in 2009 International Conference on Power Electronics and Drive Systems (PEDS), 2009, pp. 1188-1193.
    [43] Rich Rosen, Texas Instruments, “Dimming Techniques for Switched-Mode LED Drivers,” National Semiconductor, 2011.
    [44] H. J. Chiu, Y. K. Lo, J. T. Chen, S. J. Cheng, C. Y. Lin, and S. C. Mou, “A High-Efficiency Dimmable LED Driver for Low-Power Lighting Applications,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 735-743, 2010.
    [45] S. Moon, G. B. Koo, and G. W. Moon, “A New Control Method of Interleaved Single-Stage Flyback AC-DC Converter for Outdoor LED Lighting Systems,” IEEE Transactions on Power Electronics, vol. 28, pp. 4051-4062, 2013.
    [46] Leadtrend Technology Corporation, LD5766E1 Datasheet, Rev. 00, December. 2016.
    [47] X. Wu, J. Yang, J. Zhang, and M. Xu, “Design Considerations of Soft-Switched Buck PFC Converter with Constant On-Time (COT) Control,” IEEE Transactions on Power Electronics, vol. 26, pp. 3144-3152, 2011.
    [48] 鄒明璋,「抑制電能轉換器傳導EMI之新型抖頻技術」,博士論文,電機工程系,國立臺灣科技大學,台北市,2015。
    [49] 劉開平,「具改善待機效率之LLC諧振轉換器研製」,碩士論文,電機工程系,國立臺灣科技大學,台北市,2014。
    [50] 胡宏新,「半橋LLC諧振轉換器效率改善與系統研製」,碩士論文,電機工程系,國立臺灣科技大學,台北市,2015。

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE