簡易檢索 / 詳目顯示

研究生: 陳建志
Jian-Jhih Chen
論文名稱: 利用不同前驅物以油墨網印法製備硒化銅銦鎵太陽能電池及其分析
Preparation and analysis of ink-printed CuInGaSe2 solar cells by using different precursors
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 何清華
Ching-Hwa Ho
薛人愷
Ren-kae Shiue
郭永綱
Yung- Kang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 102
中文關鍵詞: 硒化銅銦鎵油墨網印法
外文關鍵詞: CIGSe, ink-printing
相關次數: 點閱:229下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,許多研究者紛紛投入CIGSe薄膜太陽能電池非真空製程之研究,非真空製程方式極多,其薄膜緻密程度及晶粒大小為光電轉換效率之關鍵。
    本實驗利用油墨網印法製備硒化銅銦鎵薄膜太陽能電池,以不同之前驅物薄膜(CIGSe、CIGSe + 10 mol %Te、CIGSe + 5 mol %Sb2S3、陶金CIG及陶金CIGZT),藉由適當之硒化條件(硒化源及硒化方式)進行硒化退火,透過XRD、FE-SEM、EDS及霍爾量測分析硒化銅銦鎵吸收層之物理性質。將各組成較佳之參數製備成電池元件(Ag/ITO(RF supttering,500 nm)/i-ZnO(RF sputtering,50 nm)/CdS(CBD,50 nm)/吸收層(screen printing,2-5 μm)/Mo(DC supttering,800 nm)/ Al2O3),利用擬太陽能光測試儀器測試其電池之光電轉換效率。
    實驗結果顯示,於陶瓷CIGSe方面,(CIGSe + 5 mol% Sb2S3)薄膜於650 oC下硒化後,薄膜表面型態最為平整且緻密,晶粒粒徑約為500 nm;於陶金前驅物方面,陶金CIG及陶金CIGZT前驅物薄膜於650 oC硒化後,其晶粒粒徑約為1-2 μm。經XRD分析皆為CIGSe單一相,EDS及霍爾量測分析皆為缺銅之p-type 半導體。將此三組製程參數之吸收層製備成電池元件,其光電轉換效率分別為0.268% (CIGSe + 5 mol% Sb2S3)、0.96%(陶金CIG)及0.861%(陶金CIGZT)。


    The non-vacuum processes for Cu(In,Ga)Se2(CIGSe) solar cells have gradually attracted the researches’ attentions. However, the major problem of the non-vacuum processes is the densification, grain size and the purity of the p-type absorption layer.
    In the study, CIGSe thin film solar cells were prepared by using ink-printing on alumina substrates. The p-type absorption layers were prepared with different precursor (CIGSe, CIGSe + 10 mol% Te, CIGSe + 5 mol% Sb2S3, and CIG and CIGZT cermets), followed by selenization with different Se sources and annealing temperatures. The CIGSe solar cell was constituted with the stacking form of Ag/ITO/ZnO/CdS/ ink-printing CIGSe/Mo/Al2O3. The quality of the absorption layer was analyzed by X-ray diffractometer, field-emission scanning electron microscope equipped with energy dispersive X-ray spectrometer and Hall measurement. The performance of the solar cells was evaluated under the standard AM1.5 illumination.
    The experimental results showed that the ink-printing CIGSe thin film of a thickness of 2-5 μm with the CIGSe + 5 mol% Sb2S3 ceramic precursor after selenization at 650 oC had shown the best performance with dense microstructure, desired composition, and the grain size of 500 nm. On the other hand, the CIGSe films obtained from CIG and CIGZT cermet precursors after selenization at 650 oC had good crystillinity and large grain size of 1-2μm. The stacked solar cells displayed the power conversion efficiencies of 0.268% (CIGSe + 5mol % Sb2S3), 0.96% (CIG) and 0.861% (CIGZT).

    摘要 I Abstract III 目錄 IV 圖目錄 VI 表目錄 X 第一章 序論 1 1-1 前言 1 1-2 太陽能電池發展 2 1-3 薄膜太陽能電池的種類 2 1-3-1 矽薄膜太陽能電池(Thin film silicon solar cells) 2 1-3-2 非晶系矽太陽能電池 (Amorphous silicon solar cell) 3 1-3-3 碲化鎘薄膜太陽能電池 (Cadmium Telluride thin film photovoltaics,CdTe) 3 1-3-4 硒化銅銦鎵太陽能電池 (Copper Indium Gallium Diselenide solar cells, CIGSe) 4 1-4 研究動機與目的 5 第二章 基礎理論及文獻回顧 7 2-1 太陽能電池工作原理 7 2-2 CIGSe薄膜太陽能電池之基本構造 9 2-2-1 基板 10 2-2-2 底電極(Back metal contact) 11 2-2-3 吸收層(Absorber layer) 11 2-2-4 緩衝層(Buffer layer) 29 2-2-5 窗口層(Window layer) 30 2-2-6 上電極(Top metal contact) 30 第三章 實驗步驟 31 3-1 實驗設備說明,, 31 3-1-1 DC直流濺鍍系統 31 3-1-2 RF射頻濺鍍系統 32 3-1-3 網版印刷機 33 3-1-4 高溫真空管型爐 33 3-1-5 化學浴相關儀器製備 33 3-2 實驗藥品與氣體選擇 37 3-2-1 藥品 37 3-2-2 氣體 38 3-3 實驗流程 39 3-3-1 基板清洗 39 3-3-2 吸收層粉體、漿料及薄膜製備 39 3-3-3 緩衝層 43 3-3-4 窗口層 44 3-3-5 ITO透明導電層 44 3-3-6 上電極層 44 3-4 實驗參數 47 3-5 分析儀器 50 3-5-1 場發射掃描式電子顯微鏡 (Field Emission-Scanning Electron Microscope,FE-SEM) 50 3-5-2 X光繞射分析儀 (X-ray Diffractometer,XRD) 50 3-5-3 霍爾量測 (Hall Effect Measurement System) 51 3-5-4 擬太陽能光測試儀 (Standard AM1.5 illumination meter) 51 第四章 結果與討論 52 4-1 XRD結構性質分析 52 4-1-1 前驅物粉體之XRD結構性質分析 52 4-1-2 陶瓷CIGSe薄膜之XRD結構性質分析 56 4-1-3 金屬陶瓷複合薄膜之XRD結構性質分析 62 4-2 CIGSe薄膜之 FE-SEM 表面型態分析 64 4-2-1 陶瓷CIGSe薄膜 64 4-2-2 金屬陶瓷複合薄膜之FE-SEM表面型態分析 70 4-3 EDS成分分析 74 4-3-1 陶瓷CIGSe薄膜之EDS成分分析 74 4-3-2 金屬陶瓷複合薄膜之EDS成分分析 78 4-4 霍爾量測 83 4-4-1 陶瓷CIGSe薄膜之霍爾量測 83 4-4-2 金屬陶瓷複合薄膜之霍爾量測 88 4-5 太陽能電池之光電轉換效率量測 92 第五章 結論 97 參考文獻 99

    柯志昇,綠色能源當道-全球太陽能電池市場與產業發展趨勢分析,資訊工業策進會產業情報研究所 (2008)
    H. J. Moller “Semiconductor For Solar Cell” Landon, Artech House, (1993).
    F. Kessler, D. Rudmann. ” Technological aspects of flexible CIGS solar cells and modules ” Solar Energy 77, 685–695 (2004).
    P. Jackson*, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla.” New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%” Prog. Photovolt: Res. Appl. 19, 894-897 (2011).
    I. Repins , M.A. Contreras , B. Egaas, C. DeHart, J. Scharf, C.L. Perkins,B. To and R. Noufi.”19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factorz” Prog. Photovolt: Res. Appl. 16, 235-239 (2008).
    A. Chirila, P. Bloesch, S. Seyrling, A. Uhl, S. Buecheler, F. Pianezzi, C. Fella, J. Perrenoud, L. Kranz, R. Verma, D. Guettler, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, D. Bremaud and A.N. Tiwari.” Cu(In,Ga)Se2 solar cell grown on flexible polymer substrate with efficiency exceeding 17%” Prog. Photovolt: Res. Appl. 19, 560–564 (2011).
    S. Merdes*, D. Abou-Ras, R. Mainz, R. Klenk, M. Ch. Lux-Steiner, A. Meeder,
    H. W. Schock and J. Klaer.”CdS/Cu(In,Ga)S2 based solar cells with efficiencies reaching 12.9% prepared by a rapid thermal process” Prog. Photovolt: Res. Appl. (2012)
    R.N. Bhattacharya, J.F. Hiltner, W. Batchelor, M.A. Contreras, R.N. Noufi, J.R. Sites. ”15.4% CuIn1-xGaxSe2-based photovoltaic cells from solution-based precursor films” Thin Solid Films 361-362, 396-399 (2000)
    R.N. Bhattacharya, M.K. Oh, Y. Kim ”CIGS-based solar cells prepared from electrodeposited precursor films” Solar Energy Materials & Solar Cells 98, 198–202 (2012).
    V.K. Kapur*, A. Bansal, P. Le, O.I. Asensio. ”Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks”. Thin Solid Films 431–432, 53-57 (2003).
    Q. Guo, G.M. Ford, H.W. Hillhouse, and R. Agrawal.” Sulfide Nanocrystal Inks for Dense Cu(In1-xGax)(S1-ySey)2 Absorber Films and Their Photovoltaic Performance”. NANO LETTERS Vol.9,No.8, 3060-3065 (2009).
    M.Yuan, D.B. Mitzi , O. Gunawan , A.J. Kellock , S.J. Chey , V.R. Deline,“Antimony assisted low-temperature processing of CuIn1−xGaxSe2−ySy solar cells” Thin Solid Films 519,852–856 (2010)
    M. Yuan, D.B. Mitzi,*, W. Liu, A.J. Kellock, S.J. Chey, and V.R. Deline.” Optimization of CIGS-Based PV Device through Antimony Doping” Chem. Mater. 22, 285–287 (2010).
    T.K. Todorov, O. Gunawan, T. Gokmen and D.B. Mitzi. Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell” Prog. Photovolt: Res. Appl. (2012)
    黃偉倫,”能帶偏移與缺陷參數對CIGS太陽能薄膜電池影響之數值模擬”國立東華大學光電工程研究所,碩士學位論文 (2009)
    S. Pookpanratana, I. Repins, M. Bar, L. Weinhardt, Y. Zhang, R. Felix, M. Blum, W. Yang,and C. Heske” CdS/Cu(In,Ga)Se2 interface formation in high-efficiency thin film solar cells” Appl. Phys. Lett. 97, 074101 (2010).
    L. Weinhardt, M. Bar, S. Pookpanratana, M. Morkel, T.P. Niesen, F. Karg, K. Ramanathan, M.A. Contreras, R. Noufi, E. Umbach, and C. Heske” Sulfur gradient-driven Se diffusion at the CdS/CuIn(S,Se)2 solar cell interface” Appl. Phys. Lett. 96, 182102 (2010).
    A. Romeo, M. Terheggen, D.A. Ras, D.L. Batzner, F.J. Haug, M. Kalin, D. Rudmann, A.N. Tiwari, Prog. Photovolt: Res. Appl. 12, 93 (2004).
    吳先本,“濺鍍法製備硒化銅錫鋅太陽能電池及其分析”國立台灣科技大學 材料科技研究所,碩士學位論文 (2009)
    蔡玉雯,“油墨網印法製備硒化銅錫鋅太陽能電池及其分析”國立台灣科技大學 材料科學與工程所,碩士學位論文 (2010)
    張謙維,“利用油墨網印法製備硒化銅銦鎵薄膜太陽能電池及其分析”國立台灣科技大學 材料科學與工程所,碩士學位論文 (2010)

    QR CODE