簡易檢索 / 詳目顯示

研究生: 宋隆裕
Lung-Yu Sung
論文名稱: 陽極注氧對 CO 毒化質子交換膜燃料電池之效能恢復研究
Comprehensive study of an air bleeding technique on the performance recovery of a proton-exchange membrane fuel cell subjected to CO poisoning
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
杜景順
Jing-Shan Do
林智汶
Chi-Wen Lin
薛康琳
Kan-Lin Hsueh
李英正
Yingjeng James Li
蘇威年
Wei-Nien Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 202
中文關鍵詞: 質子交換膜燃料電池CO毒化陽極注氧熱電共生燃料重組器
外文關鍵詞: Proton-exchange membrane fuel cell (PEMFC), CO poisoning, Anode air-bleeding, Combined heat and power (CHP), Reformer
相關次數: 點閱:343下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究論文主要在探討陽極注氧(Anode air-bleeding)對 CO 毒化質子交換膜燃料電池(PEMFC)的性能影響及其動態行為模式的分析,尤其是在高 CO 濃度進料(H2+200 ppm CO),同時也進行各種操作參數(電池溫度、電池電壓、CO濃度、陽極注氧濃度)對CO毒化的影響及長時間陽極注氧對電池穩定性及耐久性的評估。藉此研究論文提供更多的研究資訊與測試數據,以做為解決燃料電池CO毒化的參考方案,同時期望能應用於燃料電池熱電共生(Combined heat and power, CHP)發電系統及達到簡化燃料重組器(Reformer)的設計與製作。
在實驗材料及測試分析方面,本研究是使用25 cm2單電池為測試電池,其中的膜電極材料為Gore PRIMEA 5621 MEA,並使用兩種氣體擴散層材料(碳布及碳紙),型號分別為CARBEL CL® GDL及SIGRACET® GDL 10BC。測試電池的流道板使用POCO碳板材料,其中流道長度及型態為65cm/Serpentine。電池所有的性能測試都在標準的燃料電池性能測試系統(HEPHAS HTS-125)中進行,其中測試項目包括:極化曲線、電池阻抗變化及電壓/電流的輸出變化,同時也使用穿透式電子顯微鏡(TEM)及能量分散光譜(EDS)來分析觸媒材料的內部結構與化學組成。
以下為本研究論文所獲得的重要研究結果:
‧當操作在 Pure H2 時,電池可獲得優異的性能(1800 mA/cm2 @0.5V),但是H2中只要含有微量CO濃度(例如:25及200 ppm),電池性能會發生嚴重衰退(分別下降至920及315 mA/cm2 )。電池的電壓損失在高電壓區域(0.9~0.8V),幾乎不受CO濃度的影響,但是在低電壓區域(< 0.8V)就明顯受到CO濃度的影響。其中可能的原因是在高電壓(低電流)時,CO於Pt觸媒上的吸附對活化過電位的影響很小;但是在低電壓(高電流)區域,CO於Pt觸媒上的吸附會對活化過電位造成重大的影響。
‧CO毒化會造成電池輸出電流密度的迅速下降,但是下降的電流密度最終會到達一穩定值(iss),其中所需時間為 tss。此iss及tss都與CO濃度成反比的關係,但是在低CO濃度時,電池的iss明顯呈現較高的CO靈敏度(SCO)。所以陽極雖然使用具CO容忍度的 Pt-Ru 合金觸媒,即使只有微量CO濃度,電池仍然會在短時間內造成嚴重的性能損失。當CO濃度為25 ppm時,電池在40分鐘內就會造成40%的電流損失;當CO濃度為50 ppm時,電池在20分鐘內就會有高達80%的電流損失。
‧只要在陽極進料中注入小量空氣就可快速達到抑制CO毒化的功效,並且可大幅恢復電池的輸出性能。當CO濃度為50 ppm時,只要注氧 5% air就可在1分鐘內恢復90%的電池性能;即使在高CO濃度進料下(H2+200 ppm CO),也可在10分鐘內達到90%的恢復率,但是過高的注氧濃度(>10% air)反而會造成電池性能的下降,所以適當的注氧量必須要依據CO濃度來調整。由測試結果顯示,當H2進料中含有25, 50, 100, 200 ppm CO時,最佳的陽極注氧濃度分別為2%, 3%, 5%及7% air,這些都可使電池性能大幅恢復達88%以上。
‧本研究提出一暫態的理論CO毒化模式,此模式最大特點是在陽極注氧時,有考慮N2分子在Pt觸媒上的吸附及脫附效應。另外也提出一簡易的半經驗方程式(Semi-empirical equation),主要用來模擬在各種操作參數下(操作溫度、電壓、電流、CO濃度、注氧濃度),燃料電池CO毒化的動態行為。從研究數據的比較與分析發現,所提出的兩種CO毒化模式在實驗值與模擬結果的趨勢都有很好的一致性。
‧陽極使用模擬重組氣體(45% H2、17% CO2、3% CH4及 25 ppm CO),在定電流密度(@300 mA/cm2)下完成3,000小時燃料電池的耐久性測試。由實驗結果顯示,電池在陽極注氧下(5% air)具有相當穩定的電壓輸出,而且電壓衰退情形並不嚴重< 3% (或0.64×10−5 V/hr)。
‧提高電池的操作溫度可以大幅提升CO容忍度(CO tolerance),但是溫度太高(>80℃)也會造成質子交換膜過於乾燥而降低H+ 質子傳導率。如果要同時改善電池的輸出性能及降低CO毒化效應,建議電池的操作溫度要比操作純H2進料時提高5~10℃。
‧電池的過電壓損失與電荷轉移阻抗都是隨著CO濃度的增加而大幅增加,而且是呈線性的正比關係,但是電池的內電阻幾乎不受CO濃度變化的影響。
‧電池在高CO濃度進料下(H2+200 ppm CO),5% air的陽極注氧可提升電池性能達80%以上,其中電池性能的回升速度要比使用Pure H2快約15倍。電池在300小時的測試過程都維持相當穩定的電流輸出(@0.6 V),其中電流密度的衰退率保持在2%以下。
‧對於質子交換膜燃料電池發電系統,如果它的陽極富氫氣體是來自於重組器,應用陽極注氧技術可帶來兩個獨特優點:(1)發電系統可獲得相當穩定的電力輸出,而且可大幅降低輸出功率的振盪幅度;(2)可提升發電系統對高CO濃度(200 ppm CO)的容忍度,因此可大幅簡化燃料重組器的設計與製作。


This study investigates the effectiveness of anode air-bleeding on the dynamic performance of a proton exchange membrane fuel cell (PEMFC) in a CO poisoning situation. The scope of the study covers various operational conditions at high CO concentrations (H2+200 ppm CO), including cell temperature, cell voltage, CO concentration, and the amount of air bleeding. The cell’s long-term durability under air bleeding conditions has also been evaluated. The results of this study provide additional data and information that may contribute to the resolution of PEMFC poisoning by CO and also towards a simple reformer design that incorporates a combined heat and power (CHP) unit.
A single cell with an active area of 25 cm2 was used for the testing. The membrane electrode assembly used was a Gore PRIMEA 5621 MEA. The gas diffusion layers were CARBEL CL® GDL and SIGRACET® GDL 10BC. The carbon plate was a POCO carbon plate with 65 cm serpentine flow channels. All the cell performance tests, I-V polarization curve, impedance, and dynamic behavior of the cell’s voltage/current, were carried out on a standard fuel cell testing station (HEPHAS HTS-125). The structure and chemical composition of the catalyst material were examined by TEM (tunneling electron microscopy) and EDS (energy dispersing spectra).

Important findings are summarized as follows:
‧Excellent cell performance was obtained (1800 mA/cm2 @0.5V) with pure H2. However, trace amounts of CO, i.e. 25 and 200 ppm, in the H2 fuel resulted in severe performance degradation with the cell’s output current dropping to 920 and 315 mA/cm2, respectively. The voltage loss in the high cell voltage region (0.9~0.8V) was independent of CO concentration: this might be due to low CO adsorption in this region. CO adsorption had only a minor effect on the activation overpotential. However, in the low cell voltage region (< 0.8V), CO adsorption became significant and the influence of CO on the activation overpotential is important.
‧CO poisoning can cause the cell’s output current to drop quickly. After tss, the current drop eventually reached a steady value (iss). Both tss and iss were inversely proportional to the CO concentration. At low CO concentrations, the value of iss was very sensitive to the presence of CO. Cell performance decreased significantly in a short time, even when a CO-tolerant catalyst (Pt-Ru) was used at the anode. Within 40 min, about 40% of the output current was lost with 25 ppm CO. With 50 ppm CO, about 80% of the output current was lost within 20 min.
‧The CO poisoning effect can be depressed by injecting a small amount of air into the anode fuel stream. At 50 ppm CO, about 5% air bleeding can recover 90% of the cell current within 1 minute. Even at high CO concentrations (H2+200 ppm CO), about 90% of the cell’s current could be recovered within 10 min. However, excessive air bleeding (> 10% air) will reduce the cell’s performance. The amount of air bleeding must be adjusted according to the CO concentration. Our results indicate that 88%, or above, cell current can be recovered if 2%, 3%, 5% and 7% air bleeding is used when the CO concentration is 25, 50, 100, and 200 ppm, respectively.
‧We have also proposed two transient CO poisoning models. One is a physical model and the other one is a semi-empirical model. The physical model considers the adsorption/desorption effect of N2 on Pt catalyst. The semi-empirical approach models the dynamic responses of CO poisoned PEMFCs under various temperature, voltage, current, CO concentration, and air bleeding conditions. Modeling results from both models were in good agreement with the experimental data.
‧At a constant current of 300mA/cm2, we have completed a 3,000 hour durability test using simulated reformate gas (45% H2, 17% CO2, 3% CH4, and 25 ppm CO) as the anode fuel. The results showed a more stable cell output voltage and that the cell voltage degradation was less than 3% (or 0.64×10−5 V/hr) with 5% air bleeding.
‧The cell is more tolerant to CO at elevated temperatures. However, the proton exchange membrane (PEM) may dry out and lose its proton conductivity if the cell temperature is too high (> 80 °C). To improve cell performance and reduce the effect of CO poisoning, we recommend operating the cell at 5-10 oC higher than the temperature for pure H2.
‧Cell voltage loss and resistance of charge transfer are linearly proportional to the CO concentration. However, the cell’s internal resistance is independent of the CO concentration.
‧At high CO concentrations (H2+200 ppm CO), 80% of the cell’s performance can be recovered by 5% air bleeding. The cell’s performance recovery rate with air bleeding was about 15 times faster than with pure H2. For a 300 hour durability test a stable cell current could be maintained (@ 0.6 V) with a degradation rate below 2%.
‧For a PEMFC power system, with hydrogen-rich reformate gas generated from a reformer, air bleeding offers two unique advantageous outcomes: (a) a stable power output with minimum power fluctuations, (b) the possibility of creating a robust reformer design with high CO tolerance (200 ppm).

摘 要…………………………………………………………………………I Abstract……………………………………………………………………V 誌 謝……………………………………………………………………VIII 目 錄………………………………………………………………………X 圖目錄……………………………………………………………………XIV 表目錄……………………………………………………………………XIX 符號索引…………………………………………………………………XX 縮寫索引………………………………………………………………XXIII 第一章 緒 論………………………………………………………………1 1.1 研究背景………………………………………………………………1 1.2 燃料電池簡介…………………………………………………………5 1.2.1燃料電池之發展……………………………………………………6 1.2.2燃料電池之發電原理………………………………………………7 1.2.3燃料電池種類………………………………………………………11 1.3重組產氫技術與燃料重組器…………………………………………22 1.3.1重組產氫技術………………………………………………………22 1.3.2燃料重組器(Reformer)……………………………………………26 1.4燃料電池CHP發電系統及其發展現況………………………………30 1.5 研究動機與目的……………………………………………………49 1.6 論文架構……………………………………………………………55 第二章 質子交換膜燃料電池(PEMFC) …………………………………59 2.1燃料電池(PEMFC)結構與組件………………………………………59 2.1.1質子交換膜(Proton exchange membrane, PEM) ………………61 2.1.2觸媒層(Catalyst layer, CL) ……………………………………63 2.1.3氣體擴散層(Gas diffusion layer, GDL) ………………………65 2.1.4雙極板(Bipolar plate, BP) ……………………………………68 2.2燃料電池(PEMFC)工作原理……………………………………………71 2.3燃料電池(PEMFC)極化曲線……………………………………………73 2.4燃料電池(PEMFC)阻抗分析……………………………………………78 2.4.1電流中斷法(Current interrupt method) ………………………79 2.4.2交流阻抗法(AC-Impedance method) ………………………………82 第三章 文獻回顧……………………………………………………………89 3.1 H2氧化及CO毒化之反應機制…………………………………………89 3.2燃料電池CO毒化模式分析………………………………………………93 3.3 燃料電池抗CO毒化方法………………………………………………96 3.3.1重組氣體的前處理(Pre-treatment of the reformate gas)……97 3.3.2電壓脈衝法(Pulsed oxidation) …………………………………103 3.3.3陽極注氧法(Air-bleeding into anode fuel stream)…………105 3.3.4 Pt合金觸媒(Platinum alloy catalysts) ……………………109 3.3.5改變電池操作條件(Change cell operating conditions)……111 3.3.6雙層陽極結構(Bilayer anode structure) ……………………113 3.3.7高溫膜材料(High temp. membrane) ……………………………115 第四章 實驗材料與測試裝置……………………………………………117 4.1燃料電池實驗材料……………………………………………………117 4.1.1膜電極組(MEA) ……………………………………………………118 4.1.2氣體擴散層(GDL) …………………………………………………119 4.1.3氣密墊片(Gasket)…………………………………………………122 4.1.4氣體流場板(Gas flow-field plate)……………………………122 4.1.5集電板(Current collector plate) ……………………………124 4.1.6 端板(End plate)…………………………………………………124 4.2實驗裝置及電池活化………………………………………………125 4.2.1實驗裝置……………………………………………………………125 4.2.2電池活化……………………………………………………………128 第五章 陽極注氧對CO毒化燃料電池之性能影響研究…………………130 5.1 CO在陽極氫燃料中對電池性能之影響………………………………132 5.2陽極注氧對電池性能之影響.…………………………………………133 5.3 陽極注氧對電池I-V曲線之影響……………………………………136 5.4 CO毒化暫態模式之建立………………………………………………138 5.5模擬結果與討論………………………………………………………142 5.6陽極注氧對PEMFC電池長期耐久性之影響 …………………………149 第六章 操作參數對CO毒化燃料電池之性能影響研究…………………151 6.1 電池操作溫度對CO毒化之影響………………………………………154 6.2 電池操作電壓對CO毒化之影響………………………………………156 6.3 CO濃度對CO毒化之影響………………………………………………158 6.4 陽極注氧濃度對CO毒化之影響………………………………………160 6.5 CO毒化半經驗方程式之建立…………………………………………162 6.6 H2 燃料中CO濃度對燃料電池性能之影響……………………………167 6.6.1 I-V 極化曲線量測…………………………………………………167 6.6.2 In-situ交流阻抗量測……………………………………………170 6.7 陽極注氧對燃料電池I-V性能之影響. ……………………………173 6.8陽極注氧對PEMFC電池長期穩定性之影響……………………………177 6.9 陽極注氧在燃料電池CHP發電系統之優點…………………………180 第七章 結論與未來展望…………………………………………………182 7.1結 論……………………………………………………………………182 7.2 未來展望………………………………………………………………185 第八章 參考文獻……………………………………………………………187 作者簡介(Curriculum vitae)……………………………………………198

[1] http://www.bp.com, “Statistical review of world energy full report”, (2012).
[2] A. Bugat, “Future Means of Hydrogen Production”, 17th WHEC, Lyon, France, pp. 13-16 (2006).
[3]張寬裕,“燃料電池原理”,鼎茂圖書出版社股份有限公司 (2010).
[4] http://americanhistory.si.edu/fuelcells/basics.htm
[5]黃鎮江,“燃料電池”,第三版,滄海書局 (2008)。
[6]鄭煜騰、鄭耀宗,“質子交換膜型燃料電池的製造技術”,能源季刊,第二十七卷第二期,118 (1997)。
[7]衣寶廉、黃朝榮、林修正,“燃料電池-原理與應用”,五南圖書出版股份有限公司 (2005)。
[8] J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, John Wiley & Sons, LTD (2000).
[9] P. Stonehart, “Development of Alloy Electrocatalysts for Phosphoric Acid Fuel Cells (PAFC)”, J. Appl. Electrochem., 22, pp. 995-1001 (1992).
[10] H. Kameyama, “Hydrogen Production Technology in Clean Energy Society”, The Society of Chemical Engineering of Japan, 68, pp. 166 (2004).
[11]李秋煌,「燃料電池暨產氫技術」,工程,第79期,第45-56頁 (2006)。
[12]吳俊達,「重組器產氫技術的發展與應用」,工業材料雜誌,第250期,第 126-136 頁 (2007)。
[13] 6th Int’l Hydrogen & Fuel Cell Expo, Proceedings of the technical conference, Tokyo Big Sight, Japan (2010).
[14] M. Akai, “Stationary Fuel Cell Program in Japan”, IEA EGRD Workshop, Transforming Innovation into Realistic Market Implementation Programmes, NIAIST (2010).
[15] 7th Int’l Hydrogen & Fuel Cell Expo, Proceedings of the technical conference, Tokyo Big Sight, Japan (2011).
[16]黃炳照、蘇威年、宋隆裕、楊昌中、劉嘉楣、張文昇,“我國燃料電池業界技術盤點”,期末研究報告 (2012)。
[17]陳崇憲,“推展氫能應用新時代-能源局推動氫能與燃料電池產業與技術”,能源報導6,pp. 26-28 (2008)。
[18] 經濟部標準檢驗局,“各國制定燃料電池標準程序及未來發展之研討會”,(2010)。
[19] E. M. Assaf, J. M. Assaf, “Hydrogen purification for fuel cell using CuO/CeO2–Al2O3 catalyst”, J. Power Sources,196, pp. 47-753 (2011).
[20] H. S. Chu, F. Tsau, Y. Y. Yan, K. L. Hsueh, F. L. Chen, “The development of a small PEMFC combined heat and power system”, J. Power Sources, 176, pp. 499-514 (2008).
[21] N. Briguglio, M. Ferraro, G. Brunaccini, V. Antonucci, “Evaluation of a low temperature fuel cell system for residential CHP”, Int. J. Hydrogen Energy, 36, pp. 8028-8029 (2011).
[22] M. F. Torchio, M. G. Santarelli, A. Nicali, “Experimental analysis of the CHP performance of a PEMFC stack by a 24 factorial design”, J. Power Sources, 149, pp. 33-43 (2005).
[23] P. V. Gosavi, R. B. Biniwale, “Catalytic preferential oxidation of carbon monoxide over platinum supported on lanthanum ferriteeceria catalysts for cleaning of hydrogen”, J. Power Sources, 222, pp. 1-9 (2013).
[24] D. L. Trimm, “Minimisation of carbon monoxide in a hydrogen stream for fuel cell application”, Appl. Catal. A: Gen., 296, pp. 1-11 (2005).
[25] S. Gottesfeld, J. Pafford, “A New Approach to the Problem of Carbon Monoxide Poisoning in Fuel Cells Operating at Low Temperatures”, J. Electrochem. Soc. 135 (1988) 2651-2652.
[26] S. J. Lee, S. Mukerjee, E. A. Ticianelli, J. McBreen, “Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells”, Electrochim. Acta, 44, pp. 3283-3293 (1999).
[27] G. Bender, M. Angelo, K. Bethune, R. Rocheleau, “Quantitative analysis of the performance impact of low-level carbon monoxide exposure in proton exchange membrane fuel cells”, J. Power Sources, 228, pp. 159-169 (2013).
[28] H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe, “Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite”, Appl. Catal. A: Gen., 159, pp. 159-166 (1997).
[29] M. J. Kahlich, H. A. Gasteiger, R.J. Behm, “Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3”, J. Catal., 171, pp. 93-105 (1997).
[30] V. Galvita, K. Sundmacher, “Cyclic water gas shift reactor (CWGS) for carbon monoxide removal from hydrogen feed gas for PEM fuel cells”, Chem. Eng. J., 134, pp. 168-174 (2007).
[31] Z. W. Dunbar, D. Chu, “Thin palladium membranes supported on microstructured nickel for purification of reformate gases”, J. Power Sources, 217, pp. 47-53 (2012).
[32] L. P. L. Carrette, K. A. Friedrich, M. Huber, U. Stimming, “Improvement of CO tolerance of proton exchange membrane (PEM) fuel cells by a pulsing technique”, Phys. Chem. Chem. Phys., 3, pp. 320-324 (2001).
[33] W. A. Adams, J. Blair, K. R. Bullock, C. L. Gardner, “Enhancement of the performance and reliability of CO poisoned PEM fuel cells”, J. Power Sources, 145, pp. 55-61 (2005).
[34] C. G. Farrell, C. L. Gardner, M. Ternan, “Experimental and modelling studies of CO poisoning in PEM fuel cells”, J. Power Sources, 171, pp. 282-293 (2007).
[35] W. Wang, “The effect of internal air bleed on CO poisoning in a proton exchange membrane fuel cell”, J. Power Sources, 191, pp. 400-406 (2009).
[36] L. Y. Sung, B. J. Hwang, K. L. Hsueh, F. H. Tsau, “Effects of anode air bleeding on the performance of CO-poisoned proton-exchange membrane fuel cells”, J. Power Sources, 195, pp. 1630-1939 (2010).
[37] T. Tingelof, L. Hedstrom, N. Holmstrom, P. Alvfors, G. Lindbergh, “The influence of CO2, CO and air bleed on the current distribution of a polymer electrolyte fuel cell”, Int. J. Hydrogen Energy, 33, pp. 2064-2072 (2008).
[38] J. Divisek, H. F. Oetjen, V. Peinecke, V. M. Schmidt, U. Stimming, “Components for PEM fuel cell systems using hydrogen and CO containing fuels”, Electrochim. Acta, 43, pp. 3811-3815 (1998).
[39] M. Inaba, M. Sugishita, J. Wada, K. Matsuzawa, H. Yamada, A. Tasaka, “Impacts of air bleeding on membrane degradation in polymer electrolyte fuel cells”, J. Power Sources, 178, pp. 699-705 (2008).
[40] M. Murthy, M. Esayian, W. K. Lee, J. W. V. Zeeb, “The Effect of Temperature and Pressure on the Performance of a PEMFC Exposed to Transient CO Concentrations”, J. Electrochem. Soc., 150, pp. A29-A34 (2003).
[41] W. Shi, M. Hou, Z. Shao, J. Hu, Z. Hou, P. Ming, B. Yi, “A novel proton exchange membrane fuel cell anode for enhancing CO tolerance”, J. Power Sources 174 (2007) 164-169.
[42] L. Zhang, J. Kim, H. M. Chen, F. Nan, K. Dudeck, R. S. Liu, G. A. Botton, J. Zhang, “A novel CO-tolerant PtRu core–shell structured electrocatalyst with Ru rich in core and Pt rich in shell for hydrogen oxidation reaction and its implication in proton exchange membrane fuel cell”, J. Power Sources, 196, pp. 9117- 9123 (2011).
[43] N. Wagner, M. Schulze, “Change of electrochemical impedance spectra during CO poisoning of the Pt and Pt-Ru anodes in a membrane fuel cell (PEFC)”, Electrochim. Acta, 48, pp. 3899-3907 (2003).
[44] J. Zhang, T. Thampan, R. Datta, “Influence of Anode Flow Rate and Cathode Oxygen Pressure on CO Poisoning of Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., 149, pp. A765-A772 (2002).
[45] L. Barelli, G. Bidini, F. Gallorini, A. Ottaviano, “Analysis of the operating conditions influence on PEM fuel cell performances by means of a novel semi-empirical model”, Int. J. Hydrogen Energy, 36, pp. 10434-10442 (2011).
[46] Y. Si, R. Jiang, J. C. Lin, H. R. Kunz, J. M. Fenton, “CO Tolerance of Carbon-Supported Platinum-Ruthenium Catalyst at Elevated Temperature and Atmospheric Pressure in a PEM Fuel Cell”, J. Electrochem. Soc., 151, pp. A1820-A1824 (2004).
[47] H. Yu, Z. Hou, B. Yi, Z. Lin, “Composite anode for CO tolerance proton exchange membrane fuel cells”, J. Power Sources, 105, pp. 52-57 (2002).
[48] C. H. Wan, Q. H. Zhuang, “Novel layer wise anode structure with improved CO-tolerance capability for PEM fuel cell”, Electrochim. Acta, 52, pp. 4111-4123 (2007).
[49] S. K. Das, A. Reis, K. J. Berry, “Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell”, J. Power Sources, 193, pp. 691-698 (2009).
[50] J. J. Linares, C. Sanches, V. A. Paganin, E. R. Gonzalez, “Performance of a poly(2,5-benzimidazole)-based polymer electrolyte membrane fuel cell”, Int. J. Hydrogen Energy, 37, pp. 7212-7220 (2012).
[51] C. P. Wang, H. S. Chu, Y. Y. Yan, K. L. Hsueh, “Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells”, J. Power Sources, 170, pp. 235-241 (2007).
[52] J. J. Baschuk, X. Li, “Modelling CO poisoning and O2 bleeding in a PEM fuel cell anode”, Int. J. Energy Research, 27, pp.1095-1116 (2003).
[53] N. Zamel, X. Li, “Transient analysis of carbon monoxide poisoning and oxygen bleeding in a PEM fuel cell anode catalyst layer” , Int. J. Hydrogen Energy, 33, pp.1335-1344 (2008).
[54] T.E. Springer, T. Rockward, T.A. Zawodzinski, S. Gottesfeld, “Model for Polymer Electrolyte Fuel Cell Operation on Reformate Feed-Effects of CO, H2 Dilution, and High Fuel Utilization”, J. Electrochem. Soc., 148, pp. A11-A23 (2001).
[55] K.K. Bhatia, C.Y. Wang, “Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed”, Electrochim. Acta, 49, pp. 2333-2341 (2004).
[56] H.S. Chu, C.P. Wang, W.C. Liao, W.M. Yan, “Transient behavior of CO poisoning of the anode catalyst layer of a PEM fuel cell”, J. Power Sources, 159, pp. 1071-1077 (2006).
[57] M. Prasanna, E. A. Cho, T. H. Lim, I. H. Oh, “Effects of MEA fabrication method on durability of polymer electrolyte membrane fuel cells”, Electrochimica Acta, 53, pp. 5434-5441 (2008).
[58] J. J. Hwang, C. H. Chao, W. Wu, “Thermal-fluid transports in a five-layer membrane-electrode assembly of a PEM fuel cell”, J. Power Sources, 163, pp. 450-459 (2006).
[59]http://www2.dupont.com/FuelCells/en_US/assets/downloads/ dfc201.pdf
[60] S. J. Shin, J. K. Lee, H. Y. Ha, S. A. Hong, H. S. Chun, I. H. Oh, “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells”, J. Power Sources, 163, pp. 146-152 (2002).
[61] K. Prater, “The renaissance of the solid polymer fuel cell”, J. Power sources, 29, pp. 239-250 (1990).
[62] M. S. Wilson, S. Gottesfeld, “Thin-film catalyst layers for polymer electrolyte fuel cell electrodes”, Journal of Applied Electrochemistry, 22, pp. 1-7 (1992).
[63] E. A. Ticianelli, C. R. Derouin, S. Srinivasan,“Localization of platinum in low catalyst loading electrodes to to attain high power densities in SPE fuel cells” J. Electroanal. Chem., 251, pp. 275-295 (1988).
[64] S. Srinivasan, O. A. Velev, A. Parthasarathy, D. J. Manko, A. J. Appleby, “High energy efficiency and high power density proton exchange membrane fuel cells-electrode kinetics and mass transport”, J. Power Sources, 36, pp.299-320 (1991).
[65] Z. Zhana, J. Xiao,Y. Zhang, M. Pan, R.Yuan, “Gas diffusion through differently structured gas diffusion layers of PEM fuel cells”, Int. J. Hydrogen Energy 32 (2007) 4443-4451.
[66] S. Park, J.-W. Lee, B. N. Popov, “Effect of carbon loading in microporous layer on PEM fuel cell performance”, J. Power Sources, 163, pp. 357-363 (2006).
[67] K. Kang, H. Ju, “Numerical modeling and analysis of micro-porous layer effects in polymer electrolyte fuel cells”, J. Power Sources, 194, pp. 763-773 (2009).
[68] X. Li, I. Sabir, “Review of bipolar plates in PEM fuel cells: Flow-field designs”, Int. J. Hydrogen Energy, 30, pp. 359-371 (2005).
[69]http://www.schunk-group.com/sixcms/media.php/1722/2008_MoldedBipolarPlates-for-FuelCells.pdf
[70]http://www.sumitomometals.co.jp/techinfo/research/products/energy/03.html
[71] H. Tawfika, Y. Hung, D. Mahajan, “Metal bipolar plates for PEM fuel cell-A review”, J. Power Sources, 163, pp. 755-767 (2007).
[72] R. A. Antunes, M. C. L. Oliveira, G. Ett, V. Ett, “Corrosion of metal bipolar plates for PEM fuel cells: A review”, Int. J. Hydrogen Energy, 35, pp. 3632-3647 (2010).
[73] F. Barbir, “PEM Fuel Cells: Theory and Practice”, Elsevier Academic Press, Burlington, MA, (2005).
[74]吳千舜,“新穎質子交換膜”,國立中央大學化學研究所碩士論文 (2004)。
[75] J. Bellows, P. Marucchi-Soos, and D. Terence Buckley, “Analysis of Reaction Kinetics for Carbon Monoxide and Carbon Dioxide on Polycrystalline Platinum Relative to Fuel Cell Operation”, Ind. Eng. Chem. Res., 35, pp. 1235-1242 (1996).
[76] G.A. Camara, E.A. Ticianelli, S.Mukerjee, “The CO Poisoning Mechanism of the Hydrogen Oxidation Reaction in Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., 149(6), pp. A748-A753 (2002).
[77] M.Q. Mello, A. Ticianelli, “Kinetic study of the hydrogen oxidation reaction on platinum and Nafion covered platinum electrodes”, Electrochimica Acta, 42(6), pp. 1031-1039 (1997).
[78] Q. Li, R. He, J.-A. Gao, J.O. Jensen, and N.J. Bjerrum, “The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C, Journal of The Electrochemical Society”, 150 (12), pp. A1599-A1605 (2003).
[79] H. Igarashi, T. Fujino, and M. Watanabe, “Hydrogen electro-oxidation on platinum catalysts in the presence of trace carbon monoxide”, J. Electroanal. Chem., 391, pp. 119-123 (1995).
[80] M. Watanabe and S. Motoo, “Chemisorbed CO on a polycrystalline platinum electrode The effect of conditioning of the surface and of partial pressure of CO”, J. Electroanal. Chem. Interfacial Electrochem., 206, pp. 197-208 (1986).
[81] L. Chen, B. Chen, C. Zhou, J. Wu, R.C. Forrey, “Influence of CO Poisoning on Hydrogen Chemisorption onto a Pt6 Cluster”, J. Phys. Chem, 112, pp. 13937-13942(2008).
[82] J.S. Yi, and T.V. Nguyen, “Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors”, J. Electrochem. Soc., 146(1), pp. 38-45 (1999).
[83] D.M. Bernardi, and M.W. Verbrugge, “Mathematical Model of a Gas Diffusion Electrode Bounded to a Polymer Electrolyte” , AIChE Journal, 37, pp. 1151-1163 (1991).
[84] D.M. Bernardi, and M.W. Verbrugge, “A Mathematical Model of a Solid Polymer Electrolyte Fuel Cell”, J. Electrochem. Soc., 139, pp. 2477-2490 (1992).
[85] Z.H. Wang, C.Y. Wang, and K.S. Chen, “Two-Phase Flow and Transport in the Air Cathode for Proton Exchange Membrane Fuel Cells” , Journal of Power Sources, 94, pp. 40-50 (2001).
[86] L. You, H. Liu, “A two-phase flow and transport model for the cathode of PEM fuel cells”, International Journal of Heat and Mass Transfer, 45, pp. 2277-2287 (2002).
[87] S.H. Chan, S.K. Goh, S.P. Jiang, “A mathematical model of polymer electrolyte fuel cell with anode CO kinetics” , Electrochimica Acta, 48, pp. 1905-1919 (2003).
[88] D.J.L. Brett, P. Aguiar, N.P. Brandon, A.R. Kucernak, “Measurement and modelling of carbon monoxide poisoning distribution within a polymer electrolyte fuel cell”, International Journal of Hydrogen Energy, 32, pp. 863-871 (2007).
[89] K. Aasberg-Petersen, C. Nielsen, S. Joergensen, “Membrane reforming for hydrogen”, Catalysis Today, 46, pp. 193-201(1998).
[90] K. Sekizawa, S. i. Yano, K. Eguchi, H. Arai, “Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides”, Applied Catalysis A: General, 169, pp. 291-297(1998).
[91] T.V. Choudhary, D.W. Goodman, “CO-free fuel processing for fuel cell applications”, Catal. Today, 77, pp. 65-78 (2002).
[92] Y. M. Lin, M.H. Rei., “Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor”, Catal. Today, 67, pp. 77-84 (2001).
[93] P.K. Cheekatamarla, W.S. Epling, A.M. Lane, “Selective low temperature removal of carbon monoxide from hydrogen-rich fuels over Cu-Ce-Al catalysts”, J. Power Sources, 147, pp. 178-183 (2005).
[94] L. Roses, G. Manzolini, S. Campanari, “CFD simulation of Pd-based membrane reformer when thermally coupled within a fuel cell micro-CHP system”, Int. J. Hydrogen Energy, 35, pp. 12668-12678 (2010).
[95] J. Zhang, J.D. Fehribach, R. Datta, J. Electrochem. Soc., “Mechanistic and Bifurcation Analysis of Anode Potential Oscillations in PEMFCs with CO in Anode Feed”, 151, pp. A689-A697 (2004).
[96] H.A. Gasteiger, N.M. Markovic, P.N. Ross Jr., “H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects”, J. Phys. Chem., 99, pp. 8290-8301 (1995).
[97] H.A. Gasteiger, N.M. Markovic, P.N. Ross Jr., “Electrooxidation of CO and H2/CO Mixtures on a Well-Characterized Pt3Sn Electrode Surface”, J. Phys. Chem., 99, pp. 8945–8949 (1995).
[98] B.N. Grgur, G. Zhuang, N.M. Markovic, P.N. Ross Jr., “Electrooxidation of H2/CO Mixtures on a Well-Characterized Pt75Mo25 Alloy Surface”, J. Phys. Chem., B101, pp. 3910-3913 (1997).
[99] D. A. Stevens, J. M. Rouleau, R. E. Mar, R. T. Atanasoski, A. K. Schmoeckel, M. K. Debe, and J. R. Dahna, “Enhanced CO-Tolerance of Pt–Ru–Mo Hydrogen Oxidation Catalysts”, Journal of The Electrochemical Society, 154(12), pp. B1211-B1219 (2007).
[100] Z. Qi, A. Kaufman, “CO-tolerance of low-loaded Pt/Ru anodes for PEM fuel cells”, J. Power Sources, 113, pp. 115-123 (2003).
[101] M. Murthy, M. Esayian, A. Hobson, S. MacKenzie, W.k. Lee, and J. W.V. Zeeb, “Performance of a Polymer Electrolyte Membrane Fuel Cell Exposed to Transient CO Concentrations”, Journal of The Electrochemical Society, 148, pp. A1141-A1147 (2001).
[102] K. Jiao, I.E. Alaefour, X. Li, “Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes”, Fuel, 90, pp. 568-582 (2011).

QR CODE