簡易檢索 / 詳目顯示

研究生: 林季葦
Ji-Wei Lin
論文名稱: 植基於隨機模擬機器學習法建構疏濬工期成本風險評估系統
Stochastic Simulation-based Machine Learning System for Duration and Cost Risk Evaluation of River Dredging Projects
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 李欣運
Hsin-Yun Lee
廖敏志
Min-Chih Liao
何嘉浚
Chia-Chun Ho
周瑞生
Jui-Sheng Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 180
中文關鍵詞: 疏濬工程採售分離工期與成本推估機器學習蒙地卡羅模擬法介面開發
外文關鍵詞: Dredging Engineering, Separation of Purchase and Sale, the Estimation of the construction period and the cost, Machine Learning, Monte Carlo simulation method, Visual interface
相關次數: 點閱:279下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 政府近年對疏濬工程相關議題日漸重視,水利署也致力於掌控各工程計畫執行成效,但因疏濬工程本身不確定性高且牽涉眾多利害關係人,於實際執行時常有成效不彰的狀況發生。於訪談過程中,發現疏濬工程承辦人員面臨新標案時,採用的工期及成本估算方式多為參考去年曾承辦過的案例,再行預測,但近年因氣候變遷、台灣地震、颱風等天災頻傳,地貌常發生變化,若僅參考去年之案例進行評測,恐不符合實際需求,且於工程起始階段,若未將工程項目範圍定義清楚或有缺漏,最終易導致工期與成本增加。參詢相關意見後,本研究決定針對工程起始階段的工期及成本進行推估,首先蒐集河川局自102年至107年雲端資料與疏濬工程支出標、收入標結算書與驗收證明書等歷史數據,並建立一資料庫。完成資料庫建置後,考量量化變數資料可及性,並與專家學者反覆討論後,針對工期與成本模型,整理得六個可量化、且可自歷史資料取得的影響因子,分別為砂、石、土比例、平均土石價、疏濬總量與工程標總成本(履約工期),接續應用人工智慧技術,分別對疏濬工程工期及成本建構一確定性模型。確立最佳模型後,結合蒙地卡羅模擬法以隨機抽取變數機率方式,將具不確定性之影響因子納入考量,並藉歷史資料經由巨量模擬,獲得與真實數據接近之累積分布函數圖,茲以評估工程於起始階段工期與成本的經驗機率值。最後,為便於管理單位使用,開發一使用者介面,能對工程可能花費天數與成本推算。相關單位透過本研究可掌握主要影響疏濬工程的量化因子,亦能藉由操作開發之使用者介面,於起始階段對工程工期和成本推算時,有一評判基準。


    The government has recently begun to value dredging engineering issues. The Water Resources Agency (WRA) seeks to maximize the effectiveness of various engineering projects. However, dredging engineering projects are often ineffective in reality, because dredging engineering has high uncertainty, and always involves many stakeholders. We found that many dredging project contractors submit tenders using construction period and cost estimation methods based on cases that have been undertaken on the last year. However, landform often changes owing to recent climate change, earthquakes, typhoons and other disasters. Therefore, only evaluating the projects from last year is inadequate, and often leads to increase in construction period and cost if the scope of the project is not clearly defined is or missing at the beginning of the construction.Based on previous research, this study aims to estimate the construction period and cost at the beginning of the construction. The first step is to collect the cloud data, outlay, revenue, acceptance certificate and other past data of dredging engineering from 2013 to 2018, and create the database. The next step is to consider the accessibility of quantitative variable data after completing the database, and after repeatedly discussing with experts and scholars.These are the sand, the gravel, the mud ratio, the average price of the muds, the total dredging amount and the total cost of the tender. Artificial intelligence technology is then adopted to build a deterministic model for dredging project duration and cost.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1研究背景與動機 1.2研究目的 1.3研究流程與論文架構 第二章 文獻回顧 2.1人工智慧於公共工程中預測技術之應用 2.2蒙地卡羅應用於工程之優勢效益 2.3工期與成本於公共工程起始階段之重要性 第三章 研究方法 3.1機器學習優化 3.1.1基於人工智慧之預測模型 3.1.2交叉驗證法 3.1.3粒子群優化法 3.2模型績效評估 3.3蒙地卡羅模擬法 第四章 疏濬工程研究分析與結果 4.1資料蒐集與預處理 4.1.1參數選擇 4.1.2前置處理 4.2工期與成本風險預測模型建構 4.2.1參數設定預設值之工期與成本預測模型 4.2.2模型參數優化與穩定度檢測 4.3機器學習結合蒙地卡羅模擬輸出工期與成本資料評比 4.3.1工期與成本模型變數之風險機率密度函數 4.3.2蒙地卡羅輸出工程標工期與成本累積分布函數 第五章 風險量化系統介面開發與設計 5.1介面建立之背景與工具 5.2介面建置過程 5.3操作步驟說明 5.4驗證結果分析 第六章 結論與建議 參考文獻 附錄一 可量化疏濬工程案件列表 附錄二 以Python建置工期與成本模型之程式碼 附錄三 工期與成本模型操作教學(以工期為例說明) 附錄四 介面製作 附錄五 介面製作操作教學

    [1]S. Makridakis, The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms, Futures 90 (2017) 46-60.
    [2]Y.-R. Wang, C.-Y. Yu, H.-H. Chan, Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models, International Journal of Project Management 30 (4) (2012) 470-478.
    [3]K. Yetilmezsoy, B. Ozkaya, M. Cakmakci, Artificial intelligence-based prediction models for environmental engineering, Neural Network World 21 (3) (2011) 193.
    [4]H. Salehi, R. Burgueño, Emerging artificial intelligence methods in structural engineering, Engineering Structures 171 (2018) 170-189.
    [5]A. Mellit, S.A. Kalogirou, MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives, Energy 70 (2014) 1-21.
    [6]D. Wu, D.L. Olson, A. Dolgui, Artificial intelligence in engineering risk analytics, Engineering Applications of Artificial Intelligence 65 (2017) 433-435.
    [7]M. Arafa, M. Alqedra, Early stage cost estimation of buildings construction projects using artificial neural networks, Early stage cost estimation of buildings construction projects using artificial neural networks 4 (1) (2011).
    [8]G.N. Kouziokas, The application of artificial intelligence in public administration for forecasting high crime risk transportation areas in urban environment, Transportation Research Procedia 24 (2017) 467-473.
    [9]M.-Y. Cheng, N.-D. Hoang, Y.-W. Wu, Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study, Automation in Construction 35 (2013) 306-313.
    [10]M. Shahin, Artificial Intelligence in Geotechnical Engineering: Applications, Modeling Aspects, and Future Directions, Metaheuristics in water, geotechnical and transport engineering, Elsevier Science, 2012, pp. 169-194.
    [11]J.-B. Yu, Y. Yu, L.-N. Wang, Z. Yuan, X. Ji, The knowledge modeling system of ready-mixed concrete enterprise and artificial intelligence with ANN-GA for manufacturing production, Journal of Intelligent Manufacturing 27 (4) (2016) 905-914.
    [12]Z. Ml, Y. Wp, Fuzzy Comprehensive Evaluation Method Applied in the Real Estate Investment Risks Research, Physics Procedia 24 (2012) 1815-1821.
    [13]S.R. Brady, Utilizing and Adapting the Delphi Method for Use in Qualitative Research, International Journal of Qualitative Methods 14 (5) (2015) 1609406915621381.
    [14]G.G. Brown, J.L.A. Cox, How Probabilistic Risk Assessment Can Mislead Terrorism Risk Analysts, Risk Analysis 31 (2) (2011) 196-204.
    [15]M. Rasool, T. Franck, B. Denys, Niandou Halidou, Methodology and tools for risk evaluation in construction projects using Risk Breakdown Structure, European Journal of Environmental and Civil Engineering 16 (sup1) (2012) s78-s98.
    [16]N. Subramanian, R. Ramanathan, A review of applications of Analytic Hierarchy Process in operations management, International Journal of Production Economics 138 (2) (2012) 215-241.
    [17]R.Y. Rubinstein, D.P. Kroese, Simulation and the Monte Carlo method, John Wiley & Sons, 2016.
    [18]柴洪, 马竹书, 甘.兰. 甘肃农业大学经济管理学院, 基于蒙特卡罗模拟法的工程项目财务风险评估, 项目管理技术 (2012年 11) (2012) 79-82.
    [19]J.-S. Chou, Cost simulation in an item-based project involving construction engineering and management, International Journal of Project Management 29 (6) (2011) 706-717.
    [20]C. Ou-Yang, W.-L. Chen, Applying a risk assessment approach for cost analysis and decision-making: a case study for a basic design engineering project, Journal of the Chinese Institute of Engineers 40 (5) (2017) 378-390.
    [21]吳有微, 工程專案時程風險管理蒙地卡羅模擬之應用, 中興工程 (108) (2010) 55-65.
    [22]J. Zhang, L.M. Zhang, W.H. Tang, New methods for system reliability analysis of soil slopes, Canadian Geotechnical Journal 48 (7) (2011) 1138-1148.
    [23]M. Ciampoli, F. Petrini, G. Augusti, Performance-Based Wind Engineering: Towards a general procedure, Structural Safety 33 (6) (2011) 367-378.
    [24]S. Raychaudhuri, Introduction to Monte Carlo simulation, 2008 Winter Simulation Conference, 2008, pp. 91-100.
    [25]N. Sadeghi, A.R. Fayek, W. Pedrycz, Fuzzy Monte Carlo Simulation and Risk Assessment in Construction, Computer-Aided Civil and Infrastructure Engineering 25 (4) (2010) 238-252.
    [26]Y. Wang, C. Yu, Predicting project success using ANN-ensemble classificaiton models, 2011 IEEE 3rd International Conference on Communication Software and Networks, 2011, pp. 47-51.
    [27]G.E. Gibson, Y.-R. Wang, C.-S. Cho, P. Pappas Michael, What Is Preproject Planning, Anyway?, Journal of Management in Engineering 22 (1) (2006) 35-42.
    [28]M.J. Simonette, M.E.S. Magalhães, E. Spina, PMBOK Five Process Groups and Essence Standard: Perfect Partners?, 2016 4th International Conference in Software Engineering Research and Innovation (CONISOFT), 2016, pp. 53-58.
    [29]王裕仁, 應用人工智慧於專案先期預測專案績效之研究---以台灣建築專案為例, (2010).
    [30]R.J. Ekeocha, S.K. Ogbonnaya, Relevance of modeling and simulation in the management of engineering projects, Journal of Mechanical Engineering Research 10 (3) (2018) 21-27.
    [31]V. Sooksatra, T. Rujirayanyong, W. Pewdum, Forecasting final budget and duration of highway construction projects, Engineering, Construction and Architectural Management 16 (6) (2009) 544-557.
    [32]M. Choudhry Rafiq, A. Aslam Mohammad, W. Hinze Jimmie, M. Arain Faisal, Cost and Schedule Risk Analysis of Bridge Construction in Pakistan: Establishing Risk Guidelines, Journal of Construction Engineering and Management 140 (7) (2014) 04014020.
    [33]G.C. Migliaccio, S.M. Bogus, A. Chen, Effect of Duration of Design–Build Procurement on Performance of Transportation Projects, Transportation Research Record 2151 (1) (2010) 67-73.
    [34]Y. Moret, H. Einstein Herbert, Construction Cost and Duration Uncertainty Model: Application to High-Speed Rail Line Project, Journal of Construction Engineering and Management 142 (10) (2016) 05016010.
    [35]S. Samadianfard, M.A. Ghorbani, B. Mohammadi, Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm, Information Processing in Agriculture 5 (4) (2018) 465-476.
    [36]R. Mitchell, J. Michalski, T. Carbonell, An Artificial Intelligence Approach, Springer, 2013.
    [37]Y. Li, W. Jiang, L. Yang, T. Wu, On neural networks and learning systems for business computing, Neurocomputing 275 (2018) 1150-1159.
    [38]F. Perez, B.E. Granger, J.D. Hunter, Python: an ecosystem for scientific computing, Computing in Science & Engineering 13 (2) (2010) 13-21.
    [39]F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, Scikit-learn: Machine learning in Python, Journal of machine learning research 12 (Oct) (2011) 2825-2830.
    [40]A.J. Izenman, Multivariate regression, Modern Multivariate Statistical Techniques, Springer, 2013, pp. 159-194.
    [41]V. Vapnik, The nature of statistical learning theory, Springer science & business media, 2013.
    [42]J.-H. Hong, M.K. Goyal, Y.-M. Chiew, L.H. Chua, Predicting time-dependent pier scour depth with support vector regression, Journal of Hydrology 468 (2012) 241-248.
    [43]J.-S. Chou, C.-K. Chiu, M. Farfoura, I. Al-Taharwa, Optimizing the Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-Mining Techniques, Journal of Computing in Civil Engineering 25 (3) (2011) 242-253.
    [44]陳寬裕, 何嘉惠, 蕭宏誠, 應用支援向量迴歸於國際旅遊需求之預測, 博士論文. 台南: 遠東技術學院企業管理系. 連結, 2004.
    [45]W.-C. Hong, Y. Dong, L.-Y. Chen, S.-Y. Wei, SVR with hybrid chaotic genetic algorithms for tourism demand forecasting, Applied Soft Computing 11 (2) (2011) 1881-1890.
    [46]W.-C. Hong, Y. Dong, F. Zheng, S.Y. Wei, Hybrid evolutionary algorithms in a SVR traffic flow forecasting model, Applied Mathematics and Computation 217 (15) (2011) 6733-6747.
    [47]罗利娟, 丁宏飞, 基于PSO-SVR的粮食产量预测模型, 統計與決策 2010 (22) (2010) 37-38.
    [48]C. Suryanarayana, C. Sudheer, V. Mahammood, B.K. Panigrahi, An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India, Neurocomputing 145 (2014) 324-335.
    [49]S. Raghavendra. N, P.C. Deka, Support vector machine applications in the field of hydrology: A review, Applied Soft Computing 19 (2014) 372-386.
    [50]Ö. Baydaroğlu, K. Koçak, SVR-based prediction of evaporation combined with chaotic approach, Journal of Hydrology 508 (2014) 356-363.
    [51]I. Sumaiya Thaseen, C. Aswani Kumar, Intrusion detection model using fusion of chi-square feature selection and multi class SVM, Journal of King Saud University - Computer and Information Sciences 29 (4) (2017) 462-472.
    [52]N. Patel, S. Upadhyay, Study of various decision tree pruning methods with their empirical comparison in WEKA, International journal of computer applications 60 (12) (2012).
    [53]A.T. Kashani, A.S. Mohaymany, Analysis of the traffic injury severity on two-lane, two-way rural roads based on classification tree models, Safety Science 49 (10) (2011) 1314-1320.
    [54]R. Timofeev, Classification and regression trees (CART) theory and applications, Humboldt University, Berlin (2004).
    [55]B. Choubin, H. Darabi, O. Rahmati, F. Sajedi-Hosseini, B. Kløve, River suspended sediment modelling using the CART model: A comparative study of machine learning techniques, Science of The Total Environment 615 (2018) 272-281.
    [56]Y.-Y. Song, Y. Lu, Decision tree methods: applications for classification and prediction, Shanghai archives of psychiatry 27 (2) (2015) 130-135.
    [57]G. Zhang, B. Eddy Patuwo, M. Y. Hu, Forecasting with artificial neural networks:: The state of the art, International Journal of Forecasting 14 (1) (1998) 35-62.
    [58]E. Heidari, M.A. Sobati, S. Movahedirad, Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN), Chemometrics and Intelligent Laboratory Systems 155 (2016) 73-85.
    [59]N. Kayarvizhy, S. Kanmani, R. Uthariaraj, ANN models optimized using swarm intelligence algorithms, WSEAS Transactions on Computers 13 (45) (2014) 501-519.
    [60]B. Karlik, A.V. Olgac, Performance analysis of various activation functions in generalized MLP architectures of neural networks, International Journal of Artificial Intelligence and Expert Systems 1 (4) (2011) 111-122.
    [61]G. Singh, R.K. Panda, Daily sediment yield modeling with artificial neural network using 10-fold cross validation method: a small agricultural watershed, Kapgari, India, International Journal of Earth Sciences and Engineering 4 (6) (2011) 443-450.
    [62]J. Kennedy, R. Eberhart, Particle swarm optimization (PSO), Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1995, pp. 1942-1948.
    [63]F. Marini, B. Walczak, Particle swarm optimization (PSO). A tutorial, Chemometrics and Intelligent Laboratory Systems 149 (2015) 153-165.
    [64]K.-W. Zheng, H.-F. Wang, A dynamic local and global conjoint particle swarm optimization algorithm, International Journal of Information and Management Sciences 25 (1) (2014) 1-16.
    [65]孙斌, 姚海涛, 基于 PSO 优化 LSSVM 的短期风速预测, 电力系统保护与控制 (2012 年 05) (2012) 85-89.
    [66]洪從恕, 應用模糊分群法推估路段速率之研究, 交通大學運輸與物流管理學系學位論文 (2013) 1-36.
    [67]葉金成, 劉自強, 董耕廷, 人口結構變動對人力資源、經濟成長與社會福利配置之影響:以中國大陸為例, 全球商業經營管理學報 (3) (2011) 23-31.
    [68]蔡孝忠, 呂國臣, 許乃寧, 賈愛玫, 蒙地卡羅法在颱風侵襲機率估計的應用, 大氣科學 39 (3) (2011) 269-288.
    [69]E.J.d.S. Pereira, J.T. Pinho, M.A.B. Galhardo, W.N. Macêdo, Methodology of risk analysis by Monte Carlo Method applied to power generation with renewable energy, Renewable Energy 69 (2014) 347-355.
    [70]W. Yang, C. Tian, Monte-Carlo simulation of information system project performance, Systems Engineering Procedia 3 (2012) 340-345.
    [71]V. Clark, M. Reed, J. Stephan, Using Monte Carlo simulation for a capital budgeting project, Management accounting quarterly 12 (1) (2010) 20-20.
    [72]鄭文吉, 漫談蒙地卡羅法的原理及其應用, 高雄區農業改良場研究彙報 23 (1) (2013) 26-41.
    [73]S. Kamaruddin, V. Ravi, Credit card fraud detection using big data analytics: Use of psoaann based one-class classification, Proceedings of the International Conference on Informatics and Analytics, ACM, 2016, p. 33.
    [74]N. Saha, M.S. Rahman, M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Industrial metal pollution in water and probabilistic assessment of human health risk, Journal of Environmental Management 185 (2017) 70-78.

    無法下載圖示 全文公開日期 2024/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE