簡易檢索 / 詳目顯示

研究生: 陳亮瑜
Liang-Yu Chen
論文名稱: 3D列印複合材料之連續碳纖維線材製備系統開發
Development of Preparation System for Continuous Carbon Fiber Filament in Composite 3D Printing
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 張復瑜
郭俊良
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 112
中文關鍵詞: 複合材料連續碳纖維浸潤
外文關鍵詞: composite, continuous carbon fiber, impregnated
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今,在3D列印複合材料技術中,使用連續纖維增強熱塑性複合材料技術雖較成熟穩定,但其增強效果仍無法取代傳統FRP複合材料應用。因此本實驗室爲了符合傳統複合材料應用,選擇連續碳纖維及環氧基雙固型樹脂,開發3D列印複合材料擠出模組進行兩階段列印。而在連續纖維材料在列印擠出過程前,纖維與基材混合不均會導致空隙的產生,因此本研究開發連續纖維材料製備系統,改善纖維與基材浸潤效果。
    本研究選用適當黏度光固化基材來製備纖維線材,比較未使用以及使用連續纖維線材製備系統,發現使用不同塑形模具尺寸製備纖維線材,基材含量會因而不同;根據電子顯微鏡微結構分析結果觀察,發現基材明顯滲透至纖維内部,另外,在不同K數碳纖維下製備纖維材料,都有其適當的製備模具尺寸,且碳纖維在模具内所佔面積為60%左右時基材分佈較均匀;並透過三點彎曲試驗得知,利用此製備系統後製成的12K碳纖維材料強度能提高67%。


    Nowadays, the continuous fiber reinforced thermoplastic composite in the composite 3D printing technology is stable and fully developed, but its reinforcing effect still cannot replace the traditional FRP composite application. Therefore, in order to meet the needs in industrial composite application, in my research continuous carbon fiber and dual-cure epoxy resin were selected to develop a 3D printing composite extrusion module for 2-stage printing process. However, the uneven mixing of fiber and matrix were found before the material was extruded, it would lead to the generation of voids inside. Therefore, this study developed a continuous carbon fiber preparation system to improve the fiber and matrix impregnated effect.
    In this study, the appropriate viscosity photocurable matrix was used to prepare filaments, then compared with unused and used of the continuous carbon fiber preparation system, it was found that the matrix content was influenced through different mold sizes. Then, according to the results of Optical Microscope and Scanning Electron Microscope analysis, we found the matrix was effectively penetrated into the interior of fiber. In addition, the filament prepared through different K number of fiber which need to match appropriate mold size, and the filament had a uniform distribution of matrix when the fiber cross-section area occupied by the mold was about 60%. Furthermore, through the three-point bending test, the strength of the 12K carbon fiber prepared by using the preparation system can be improved by 67%.

    目錄 摘要 I 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 研究方法與步驟 4 1.4 論文架構 5 第二章 文獻探討 6 2.1 複合材料(Composite) [7] 6 2.2 預浸布(Prepreg) 7 2.3 複合材料製造技術 8 2.4 複合材料之積層製造技術 11 2.4.1 積層製造技術(Additive Manufacturing) 11 2.4.2 纖維增強複合材料之積層製造技術 13 2.5 光固化樹脂之組成[21][21] 18 2.5.1 環氧基寡聚物(Oligomer) 19 2.5.2 反應性稀釋單體(Reactive Monomer) 20 2.5.3 光起始劑(Photoinitiator) 21 第三章 連續纖維材料製備系統架構 25 3.1 連續纖維材料製備系統設計概念 25 3.2 連續纖維材料製備系統組成 27 3.2.1 碳纖維絲線 31 3.2.2 碳纖維張力輪 32 3.2.3 光固化基材浸佈輪 33 3.2.4 碳纖維輥壓輪 34 3.2.5 碳纖維塑形模具 35 3.2.6 光源固化裝置 37 3.2.7 系統驅動裝置 39 第四章 光固化基材系統與檢測 41 4.1 光固化基材系統介紹 41 4.1.1 環氧丙烯酸脂(EA) 42 4.1.2 聚乙二醇二丙烯酸脂(PEG(600)DA) 43 4.1.3 光起始劑(TPO) 44 4.2 光固化基材性質檢測與儀器簡介 45 4.2.1 黏度計 46 4.2.2 拉伸試驗 48 4.2.3 熱重量分析儀(Thermogravimetric analysis,TGA) 51 4.2.4 熱差示掃描分析儀(Differential scanning calorimetry,DSC) 52 4.3 光固化基材性質檢測結果 54 4.3.1 黏度測試 55 4.3.2 拉伸試驗 55 4.3.3 熱重量分析(Thermogravimetric analysis,TGA) 58 4.3.4 熱差示掃描分析(Differential scanning calorimetry,DSC) 58 4.4 各項光固化基材性質測試結果 59 第五章 纖維材料製備結果與討論 62 5.1 連續纖維材料製備測試方法 62 5.1.1 模具尺寸 65 5.2 連續纖維材料製備結果 66 5.2.1 基材含量 67 5.2.2 碳纖維分佈 70 5.2.3 三點彎曲試驗(Three-Point Bending test) 82 5.3 各項連續纖維材料製備測試結果 89 第六章 結論與未來研究方向 92 6.1 結論 92 6.2 未來研究方向 93 參考文獻 94

    參考文獻
    [1] Elmar Witten, Volker Mathes, Michael Sauer, Michael Kühnel, (2018). “Composites Market Report 2018.” The European GRP Market & The Global CF and CC Market.
    [2] Shan-Shan Yao, Fan-Long Jin, Kyong Yop Rhee, David Hui, Soo-Jin Park, (2018). “Recent advances in carbon-fiber-reinforced thermoplastic composites: A review” Composites Part B: Engineering 142:241-250.
    [3] Halil L. Tekinalp, Vlastimil Kunc, Gregorio M. Velez-Garcia, Chad E. Duty, Lonnie J. Love, Amit K. Naskar, Craig A. Blue, Soydan Ozcan, (2014). “Highly oriented carbon fiber–polymer composites via additive manufacturing.” Composites Science and Technology 105:144-150.
    [4] Peter J. Hine, Hans Rudolf Lusti, Andrei A. Gusev, (2002) “Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites.” Composites Science and Technology 62:1445-1453.
    [5] Markforged. https://markforged.com/
    [6] Moi composites. https://www.moi.am/
    [7] 葉孟考,黃婉萱,宋棋舜,呂俊麟,2019年,“複合材料力學近況簡介”,國立清華大學。
    [8] Simon Pansart, (2013) “Prepreg processing of advanced fibre-reinforced polymer (FRP) composites.” Woodhead Publishing Series in Civil and Structural Engineering:125-154
    [9] Hauke Lengsfeld, Felipe Wolff-Fabris, Johannes Krämer, Javier Lacalle, Volker Altstädt, (2016). “Composite Technology: Prepregs and Monolithic Part Fabrication Technologies.” Munich : Hanser Publishers ; Cincinnati : Hanser Publications.
    [10] Obaid Younossi, Michael Kennedy, John C. Graser, (2001). “Military Airframe Costs: The Effects of Advanced Materials and Manufacturing Processes.”
    [11] 鄭正元,江卓培,林宗翰,林榮信,蘇威年,汪家昌,蔡明忠,賴維祥,鄭逸琳,洪基彬,2017年,“3D列印積層製造技術與應用”全華圖書出版社。
    [12] Ian Gibson, David W. Rosen, Brent Stucker, (2010). “Additive Manufacturing Technologies.” Vol. 238. New York: Spring.
    [13] Pedram Parandoush, Dong Lin, (2017). “A review on additive manufacturing of polymer-fiber composites.” Composite Structures 182:36-53.
    [14] EnvisionTEC. https://envisiontec.com/
    [15] S. Bland., (2015). “MarkForged develops 3D printer for carbon fibre.” Reinforced Plastics 59(1):12.
    [16] Gregory Thomas Mark, Antoni S. Gozdz, (2014). Three dimensional printing. US Patent No. 2014/0291886 A1.
    [17] Arevo Labs. https://arevo.com/
    [18] Continuous Composites. https://www.continuouscomposites.com/
    [19] Tyler B. Alvarado, Trevor David Budge, Ryan C. Stockett, John Swallow, (2017). Additive manufacturing system implementing hardener pre-impregnation. US Patent No. 10081129 B1.
    [20] Gabriele Natale, Marinella Levi, Giovanni Postiglione, (2016). Apparatus and method for three-dimensional printing of continuous fibre composite materials. US Patent No. 2018/0370129 A1.
    [21] Mohammad Rakhshbahar, Michael Sinapius, (2018). “A Novel Approach: Combination of Automated Fiber Placement (AFP) and Additive Layer Manufacturing (ALM).” Composites Sciences.
    [22] Nanya Li, Yingguang Li, Shuting Liu, (2016). “Rapid prototyping of continuous carbon fiber reinforced polylacticacid composites by 3D printing.” Journal of Materials Processing Technology 238:218-225.
    [23] Tengfei Liu, Xiaoyong Tian, Manyu Zhang, Dilmurat Abliz, Dichen Li, Gerhard Ziegmann, (2018). “Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites.” Composites Part A: Applied Science and Manufacturing 114:368-376.
    [24] 金養智,2010年,“光固化材料性能及應用手冊",化學工業出版社。
    [25] 何志松,王維廷,2017年,“探討聚酯壓克力樹脂配方對性質之影響”,科學與工程技術期刊,第十三卷,第二期,p.33-43。
    [26] Calvin Ralph, Patrick Lemoine, Adrian Boyd, Edward Archer, Alistair McIlhagger, (2019). “The effect of fibre sizing on the modification of basalt fibre surface in preparation for bonding to polypropylene.” Applied Surface Science 475:435-445.

    無法下載圖示 全文公開日期 2024/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE