Basic Search / Detailed Display

Author: 林裕翔
Yu-Xiang Lin
Thesis Title: 透過 MEC 實現 5G O-RAN 實體的一致性檢測
Conformance Testing for 5G O-RAN Entities through MEC
Advisor: 鄭欣明
Shin-Ming Cheng
Committee: 查士朝
Shi-Cho Cha
李奇育
Chi-Yu Li
徐瑞壕
Ruei-Hau Hsu
柯拉飛
Rafael Kalisk
Degree: 碩士
Master
Department: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
Thesis Publication Year: 2022
Graduation Academic Year: 110
Language: 英文
Pages: 31
Keywords (in Chinese): O-RAN Security5G Security多接取邊緣運算一致性檢測軟體定義無線電
Keywords (in other languages): O-RAN Security, 5G Security, Multi-access Edge Computing, Conformance Testing, Software Define Radio
Reference times: Clicks: 265Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report

  • Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.0.1 5G Network Environment . . . . . . . . . . . . . 4 2.0.2 NGAP/N2 Interface Flow . . . . . . . . . . . . . 5 2.0.3 MEC Detect . . . . . . . . . . . . . . . . . . . . 7 3 The Hidden Threat of O-RAN and 5G-SA . . . . . . . . . . . . 9 3.0.1 O-RAN Security Threats . . . . . . . . . . . . . . 9 3.0.2 O-RAN Brings a New Attackable Aspect . . . . . 10 3.0.3 RAN Security Specification . . . . . . . . . . . . 11 3.0.4 OpenAirInterface 5G SA Architecture and Exper- imental Environment . . . . . . . . . . . . . . . . 11 3.0.5 DDoS/DNS Amplification Attack Potential . . . . 12 4 Behavior of Anomalous RAN Components . . . . . . . . . . . . 14 4.0.1 Features of the No-name Base Station . . . . . . . 14 4.0.2 NGAP Traffic Falsified from the RAN Side . . . . 14 4.0.3 Change NAS Payload Due to Anomaly on RAN . 15 4.0.4 Ensure RAN end Device Consistency . . . . . . . 15 5 MEC Traffic Detection Platform . . . . . . . . . . . . . . . . . 19 5.0.1 Detection items for the RAN . . . . . . . . . . . . 20 5.0.2 Encryption/Integrity Protection Supported by UE . 21 5.0.3 Deconstructing NGAP Protocol Packets with MEC 21 5.0.4 Create a Legal Path Status Machine . . . . . . . . 22 5.0.5 MEC detects abnormal signals with simple path flowchart of legal path . . . . . . . . . . . . . . . 23 5.0.6 Real-time Traffic Detection . . . . . . . . . . . . 25 6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    [1] C. Cremers and M. Dehnel-Wild, “Component-based formal analysis of 5G-AKA: Channel assump-
    tions and session confusion,” in Proc. Netw. Distrib. Syst. Security Symp. (NDSS), pp. 1–15, Feb.
    2019.
    [2] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler, “A formal analysis of 5G au-
    thentication,” in Proceedings of the 2018 ACM SIGSAC conference on computer and communications
    security, pp. 1383–1396, Oct. 2018.
    [3] H. Kim, J. Lee, E. Lee, and Y. Kim, “Touching the untouchables: Dynamic security analysis of the
    LTE control plane,” in 2019 IEEE Symposium on Security and Privacy (SP), pp. 1153–1168, Sept.
    2019.
    [4] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino, “LTEInspector: A systematic approach for
    adversarial testing of 4g LTE,” in Network and Distributed Systems Security (NDSS) Symposium 2018,
    Feb. 2018.
    [5] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino, “5GReasoner: A property-
    directed security and privacy analysis framework for 5G cellular network protocol,” in Proceedings of
    the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 669–684, Nov.
    2019.
    [6] B. Blanchet et al., “An efficient cryptographic protocol verifier based on prolog rules.,” in csfw, vol. 1,
    pp. 82–96, 2001.
    [7] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover for the symbolic analysis of se-
    curity protocols,” in International conference on computer aided verification, pp. 696–701, Springer,
    2013.
    [8] H. Moudoud, L. Khoukhi, and S. Cherkaoui, “Prediction and detection of fdia and ddos attacks in 5G
    enabled IoT,” IEEE Network, vol. 35, pp. 194–201, Nov. 2020.
    [9] M. Gusatu and R. Olimid, “Improved security solutions for ddos mitigation in 5G Multi-access Edge
    Computing,” arXiv preprint arXiv:2111.04801, Nov. 2021.
    [10] B. Feng, H. Zhou, G. Li, Y. Zhang, K. Sood, and S. Yu, “Enabling machine learning with service
    function chaining for security enhancement at 5G edges,” IEEE Network, vol. 35, pp. 196–201, Sept.
    2021.
    [11] H. Li, C. Yang, L. Wang, N. Ansari, D. Tang, X. Huang, Z. Xu, and D. Hu, “A cooperative defense
    framework against application-level ddos attacks on mobile edge computing services,” IEEE Trans-
    actions on Mobile Computing, June 2021.
    29
    [12] ETSI GS MEC 003, “Multi-access edge computing (MEC); framework and reference architecture,”
    technical specification, ETSI.
    [13] J. Nakazato, M. Nakamura, T. Yu, Z. Li, K. Maruta, G. K. Tran, and K. Sakaguchi, “Market analysis
    of MEC-assisted beyond 5G ecosystem,” vol. 9, pp. 53996–54008, Mar. 2021.
    [14] 3GPP TS 38.412, “NG-RAN; NG signalling transport,” Technical Specification 38.412, 3GPP.
    [15] 3GPP TS 38.413, “NG-RAN; NG application protocol (NGAP,” Technical Specification 38.413,
    3GPP.
    [16] 3GPP TS 38.801, “Study on new radio access technology: Radio access architecture and interfaces,”
    Technical Specification 38.801, 3GPP.
    [17] C. Guimarães, X. Li, C. Papagianni, J. Mangues-Bafalluy, L. M. Contreras, A. Garcia-Saavedra,
    J. Brenes, D. S. Cristobal, J. Alonso, A. Zabala, J.-P. Kainulainen, A. Mourad, M. Lorenzo, and C. J.
    Bernardos, “Public and non-public network integration for 5Growth industry 4.0 use cases,” vol. 59,
    pp. 108–114, July 2021.
    [18] X.-X. Lin, P. Lin, and E.-H. Yeh, “Anomaly detection/prediction for Internet of Things: State-of-the-
    art and the future,” IEEE Network, Dec. 2020.
    [19] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim, “BASESPEC: Comparative analysis of baseband soft-
    ware and cellular specifications for L3 protocols,” Network and Distributed Systems Security (NDSS)
    Symposium, Feb. 2021.
    [20] A. Sharma, V. Balasubramanian, and A. Jolfaei, “Security challenges and solutions for 5G hetnet,” in
    Proc. IEEE TrustCom 2020, pp. 1318–1323, 2020.
    [21] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (SDN) and distributed denial
    of service (DDoS) attacks in cloud computing environments: A survey, some research issues, and
    challenges,” vol. 18, pp. 602–622, Oct. 2015.
    [22] A. Filali, B. Nour, S. Cherkaoui, and A. Kobbane, “Communication and computation O-RAN resource
    slicing for URLLC services using deep reinforcement learning,” arXiv preprint arXiv:2202.06439,
    Feb. 2022.
    [23] S. Kukliński, L. Tomaszewski, and R. Kołakowski, “On o-ran, mec, son and network slicing integra-
    tion,” in 2020 IEEE Globecom Workshops (GC Wkshps, pp. 1–6, IEEE, Mar. 2020.
    [24] F. Klement, S. Katzenbeisser, V. Ulitzsch, J. Krämer, S. Stanczak, Z. Utkovski, I. Bjelakovic, and
    G. Wunder, “Open or not open: Are conventional radio access networks more secure and trustworthy
    than Open-RAN?,” arXiv preprint arXiv:2204.12227, May 2022.
    [25] D. Mimran, R. Bitton, Y. Kfir, E. Klevansky, O. Brodt, H. Lehmann, Y. Elovici, and A. Shabtai,
    “Evaluating the security of open radio access networks,” arXiv preprint arXiv:2201.06080, Jan. 2022.
    30
    [26] O-RAN.TIFG.E2E-Test, “O-RAN end-to-end test specification 2.0,” Technical Specification, O-RAN
    ALLIANCE.
    [27] 3GPP TS 24.501, “Non-access-stratum (NAS) protocol for 5G System (5GS); stage 3,” Technical
    Specification 24.501, 3GPP.
    [28] 3GPP TS 33.501, “Security architecture and procedures for 5G System,” Technical Specification
    33.501, 3GPP.
    [29] 3GPP TS 33.117, “Catalogue of general security assurance requirements,” Technical Specification
    33.117, 3GPP.
    [30] 3GPP TS 33.511, “Security Assurance Specification (SCAS) for the next generation Node B (gNodeB)
    network product class,” Technical Specification 33.511, 3GPP.
    [31] 3GPP TS 38.473, “NG-RAN; F1 application protocol (F1AP),” Technical Specification 38.473, 3GPP.
    [32] 3GPP TS 38.410, “NG-RAN; NG general aspects and principles,” Technical Specification 38.410,
    3GPP.
    [33] F. Kaltenberger, G. de Souza, R. Knopp, and H. Wang, “The openairinterface 5G new radio imple-
    mentation: Current status and roadmap,” in Proc. Int. ITG WSA 2019, Apr. 2019.
    [34] 3GPP TR 33.926, “LTE; 5G; Security Assurance Specification (SCAS) threats and critical assets in
    3GPP network product classes,” Technical Specification 33.92

    無法下載圖示 Full text public date 2027/08/02 (Intranet public)
    Full text public date 2027/08/02 (Internet public)
    Full text public date 2027/08/02 (National library)
    QR CODE