簡易檢索 / 詳目顯示

研究生: 賴郁竹
Yu-Chu Lai
論文名稱: 多參數光纖光柵液體感測研製
Multi-parameter fiber-grating-based liquid sensors: study and investigation
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 李三良
San-Liang Lee 
黃振發
Jen-Fa Huang
陳俊仲
Chun-Chung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 71
中文關鍵詞: 光纖感測光纖雷射折射率感測溫度感測液位感測
外文關鍵詞: fiber optic sensor, fiber laser, refractive index sensor, temperaturessensor, liquid level sensor
相關次數: 點閱:219下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主旨為研究光纖液體參數感測系統,主要感測的參數為液體折射率、溫度及深度。首先介紹本論文所使用的兩種光纖光柵—長週期光纖光柵與布拉格光纖光柵,詳細說明其原理、特性與製作過程,並介紹摻鉺光纖放大器作為感測用的寬頻譜光源。實驗部分使用長週期光纖光柵進行液體折射率與溫度感測,液體折射率感測以鹽水為樣本,折射率感測範圍1.335-1.375,長週期光纖光柵對於外在液體折射率變化約為-62.667 nm/n,線性度R^2約為0.997;液體溫度感測以水為樣本,感測範圍15-75℃,長週期光纖光柵對於外在液體溫度變化約為-0.3369 nm/℃,線性度R^2約為0.9952。另外,使用布拉格光纖光柵設計成光纖雷射感測液體深度,液體深度感測一樣以水為樣本,感測範圍從0公分至200公分水深。將布拉格光纖光柵黏貼於兩種不同的碳纖維複合材料上,再將複材黏貼於設計的感測頭上,雙層複材之感測頭其水位靈敏度約為-1.4 pm/cm,線性度R^2約為0.975;單層複材之感測頭其水位靈敏度約為-11.4 pm/cm,線性度R^2約為0.9989。最後,將長週期光纖光柵與布拉格光纖雷射整合於同一條光路裡,並分別感測液體折射率、溫度及深度對於此兩個感測體的變化。當液體折射率為感測參數時,長週期光纖光柵靈敏度約為-36.96 nm/n,線性度R^2約為0.9955,而布拉格光纖雷射不會因為外在折射率的改變而改變其輸出波長;當水溫為感測參數時,長週期光纖光柵靈敏度約為-0.36 nm/℃,線性度R^2約為0.9964,而布拉格光纖雷射中心波長對水溫稍有些許變化,靈敏度約0.0086 nm/℃;當水位為感測參數時,布拉格光纖雷射靈敏度約為-10.6 pm/cm,線性度R^2約為0.9987,而長週期光纖光柵對應水位變化其中心波長一直保持不變,並不會因為水位深淺而改變其輸出波長。


The aim of this thesis is to develop the fiber optic sensing systems for liquid-parameter measurement. The parameters include liquid refractive index, liquid temperature and liquid level. Here, the long period fiber grating (LPFG) and regular fiber Bragg grating (FBG) are utilized. Their principles, characteristics and the fabrication are introduced. In addition, an erbium-doped fiber amplifier (EDFA) as sensing broadband light source is included in the thesis.
The LPFGs are used to sense the change of liquid refractive index and temperature. Saline liquid, ranging from 1.335 to 1.375, is the sample liquid for refractive index measurement. The sensitivity and the linearity R^2 of refractive index sensor are -62.667 nm /n and 0.997, respectively; the sample liquid for temperature sensing is water with temperature ranging from 15 to 75℃. The sensitivity of temperature sensor is -0.3369 nm /℃ and the linearity R^2 is 0.9952, respectively.
Besides, a FBG-based linear cavity fiber laser is also proposed for the liquid level sensing. The sample liquid for level sensing is water with sensing height is from 0 to 200 cm. FBGs are pasted on two different carbon fiber reinforced plastics (CFRPs) to sense the water level, corresponding to water pressure. The variation of the sensor made by two-layer CFRP is -1.4 pm/cm and the linearity R^2 is 0.975; the variation of the sensor made by single-layer CFRP is -11.4 pm/cm and the linearity R^2 is 0.9989.
For simultaneously liquid solution refractive index/temperature and liquid level sensing, the LPFG and regular FBG are cascaded in the fiber path. When the sensing parameter is refractive index, the LPFG sensitivity is -36.96 nm/n and the linearity R^2 is 0.9955, with negligible change of central wavelength of the fiber laser under various liquid refractive index. When the sensing parameter is temperature, the LPFG sensitivity is -0.36 nm/℃ and the linearity R^2 is 0.9964, while central wavelength of the fiber laser varies a little under different temperature values. Finally, when the sensing parameter is water level, the sensitivity of fiber laser is -10.6 pm/cm and the linearity R^2 is 0.9987, nevertheless, the central wavelength of LPG is not changed under different water levels.

摘要 I Abstract II 誌謝 III 目錄 III 圖表索引 VI 第一章 緒論 1 1-1前言 1 1-2研究動機 2 1-3文獻探討 3 1-4論文架構 5 第二章 感測用光柵與光源介紹 7 2-1 光纖光柵簡介與原理 7 2-1-1 布拉格光纖光柵原理 7 2-1-2 長週期光纖光柵原理 10 2-2 感測用光纖光柵製作 11 2-2-1 布拉格光纖光柵製作 13 2-2-2 長週期光纖光柵製作 15 2-3 光纖光柵退火機制 16 2-4 感測用寬頻光源介紹 19 第三章 長週期光纖光柵之液體參數感測 23 3-1 感測理論分析 23 3-1-1 長週期光纖光柵感測折射率理論分析 23 3-1-2 長週期光纖光柵感測溫度理論分析 25 3-2 長週期光纖光柵感測系統介紹 26 3-3 實驗結果與討論 29 3-3-1 鹽水折射率感測 29 3-3-2 水溫感測 32 3-4 本章小結 35 第四章 布拉格光纖光柵液位感測 37 4-1 感測理論分析 37 4-2 摻鉺光纖雷射理論分析 39 4-3 感測系統介紹 40 4-3-1 液位感測系統架構 41 4-3-2 液位感測之感測頭設計 42 4-4 實驗結果與討論 43 4-4-1 雙層碳纖維複合材料之感測頭水位感測 44 4-4-2 單層碳纖維複合材料之感測頭水位感測 46 4-4-3 單層碳纖維複合材料之感測頭水位感測穩定度測試 49 4-5 本章小結 50 第五章 雙光柵液體參數感測系統 52 5-1 雙參數感測體整合架構 52 5-2 實驗結果與討論 54 5-2-1 雙光柵感測之折射率感測 54 5-2-2 雙光柵感測之液體溫度感測 57 5-2-3 雙光柵感測之液體位置感測 60 5-3 本章小結 64 第六章 結論與未來展望 65 6-1 結論 65 6-2 未來展望 66 參考文獻 68

[1] 安毓英、曾小東,“光纖感測與量測”,台北,五南圖書出版股份有限公司,初版,2004年3月。
[2] A. M. R. Pinto, L. A. Manuel, J. Kobelke, and K. Schuster, “Temperature Fiber Laser Sensor Based on a Hybrid Cavity and a Random Mirror,” IEEE/OSA Journal of Lightwave Technology, vol. 30, no. 8, 2012.
[3] A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Structural Control and Health Monitoring, vol. 12, pp. 269-282, 2005.
[4] Wikipedia, “Fiber Optic Sensor”, May 2015
http://en.wikipedia.org/wiki/Fiber_optic_sensor
[5] 申浩然、傅明宇、劉文豐、陳子江,“側壓式布拉格光纖光柵壓力感測器於水位量測之應用”,中正嶺學報,第三十四卷,第一期,2005年11月。
[6] 洪誠鴻、黃柏蓉、李澄鈴,“超靈敏微型光纖干涉儀之溫度感測器”, 國立聯合大學電資學院金腦獎參賽作品,2014。
[7] Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal strain monitoring,” IEEE Photonics Journal, vol. 4, no. 3, pp. 996-1002, 2012.
[8] Z. Bai, W. Zhang, S. Gao, H. Zhang, L. Wang, Y. Liu, and T. Yan, “Simultaneous measurement of strain and temperature using a long period fiber grating based on waist-enlarged fusion bitapers,” Journal of Optics, vol. 16, no. 4, 2014.
[9] 畢衛紅,張闖, “光纖Bragg光柵的反射特性研究”,中國科技論文在線,第22期,第8卷,2003。
[10] K. O. Hill and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA Journal of Lightwave Technology, vol. 15, pp. 1263-1276, 1997.
[11] A. Singh, D. Engles, A. Sharma and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” International Journal for Light and Electron Optics, vol.125, pp.457–460, 2014.
[12] 李雅萍,“Fabry-Perot etalon 所組成之光強增益平坦器之研究”,中央大學光電科學研究所碩士論文,2001年6月。
[13] T. Erdoga, “Fiber grating spectra,” IEEE/OSA Journal of Lightwave Technology 15, no. 8, pp. 1277-1294, 1997.
[14] K. O. Hill, Y. Fujii, D. C. Johnsen, and B. S. Kawasaki, “Photosensitivity in optical fiber_waveguides: Application_to_reflection_filter_fabrication,” Applied Physics Letters, vol.32, pp.647-649, 1978.
[15] C. K. Soh, Y. Yang, and S. Bhalla, “Smart Materials in Structural Health monitoring control and biomechanics,” Springer and Zhejiang University Press, pp.414-420, 2012.
[16] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg grating in optical fibers by transverse holographic method,” Optics Letters, vol.14, no.15, pp.823-825, 1989.
[17] 陳宣臣, “波長可調光纖光柵之研製與應用” ,台灣科技大學電子工程研究所碩士論文,2004年6月。
[18] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol.62, no.10, pp. 1035-1037, 1993.
[19] 劉學政,“光纖光柵研製及其於光網路模組之應用”,台灣科技大學電子工程研究所碩士論文,2002年6月。
[20] 張銘宏,“兼具增益之可重構光信號塞取多工器”,台灣科技大學電子工程研究所碩士論文,2005年6月。
[21] 洪士軒,“用於液體多參數分析之新穎光纖感測架構設計”,台灣科技大學電子工程研究所碩士論文,2014年6月。
[22] 王俊容,“光纖光柵與光循環器組成之光纖雷射: 研製與應用”,台灣科技大學電子工程研究所碩士論文,2005年6月。
[23] T. Erdogan and V. Mizrahi, “Decay of UV induced fiber Bragg gratings,” Proc. Optical Fiber Conference, pp. 50, 1994.
[24] H. G. Limberger, C. Ban, R. P. Salathe, S. A. Slattery, and D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber,” Optics Express, vol. 15, pp. 5610-5615, 2007.
[25] 范錦程, “具寬頻帶波長可調光纖光柵之 C+L band 光纖雷射之研製”,台灣科技大學電子工程研究所碩士論文,2014年6月。
[26] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol.3, pp. 991-1007, 1997.
[27] L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Optics Letters, vol. 37, no. 7, pp. 1148-1150, April, 2012.
[28] 廖協虹, “C+L-Band 摻鉺光纖放大器的研製與應用”,國立台灣科技大學電子工程研究所碩士論文,2004年6月。
[29] 廖顯奎,“當代光電工程”,初版,台中,滄海書局, 204–207頁,2006年。
[30] D. A. C. Enrı´quez , A. R. Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPFG sensor for surrounding refractive index and temperature simultaneous discrimination, ” Optics & Laser Technology, pp.981–986, 2012.
[31] 李杰,“長週期光纖光柵折射率傳感的研究概況”,廈門科技,59-62頁,2006年。
[32] Q. Mao and J. W. Y. Lit, “Multi-wavelength erbium-doped fiber laser with active overlapping linear cavities,” IEEE/OSA Journal of Lightwave Technology, vol. 21, pp. 160-169, 2003.
[33] S. K. Liaw, H. C. Chen, and Y. C. Lai, “C-Band continuously tunable lasers based on fiber Bragg gratings,” Opto-Electronic and Communication Conference 2004, Yokohama, Japan, 2004.
[34] S. W. Harun, M. Z. Zulkifli, and H. Ahmad, “A linear cavity S-band Brillouin/Erbium fiber laser,” Laser Physics Letters, vol. 3, pp. 369-371, 2006.
[35] S. K. Liaw, W. Y. Jang, C. J. Wang, and K. L. Hung, “Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings,” Applied Optics, vol. 46, pp. 2280-2282, 2007.
[36] D. B. Mortimore, “Fiber loop reflectors,” IEEE/OSA Journal of Lightwave Technology, vol. 6, no. 7, pp.1217-1224, 1988.
[37] S. Nick, “Nick Strobel's Astronomy Notes,” May, 2001.
[38] R. Kashyap, “Fiber Bragg gratings,” San Diego, USA: Academic Press, 1999.
[39] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers: fundamentals and technology,” San Diego, USA: Academic Press, 1999.
[40] 天聖金屬科技, http://www.zenda.com.tw/faq/,May 2015

QR CODE