簡易檢索 / 詳目顯示

研究生: 呂彥儒
Yen-Ju Lu
論文名稱: 高功率全光纖1064 nm 摻鐿雷射光源:設計與應用
High-Power All-Fiber 1064nm Ytterbium-Doped Laser Source : Design and Application
指導教授: 廖顯奎
Shien-Kuei Liaw
宋峻宇
Jiun-Yu Sung
口試委員: 楊富量
Fu-Liang Yang
徐世祥
Shih-Hsiang Hsu
游易霖
Yi-Lin Yu
廖顯奎
Shien-Kuei Liaw
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 102
中文關鍵詞: 環形脈衝雷射1064 nm 摻鐿光纖雷射半導體雷射偏振疊加波鎖模拉曼雷射主振盪放大器
外文關鍵詞: Fiber ring pilse laser, 1064 nm Ytterbium-doped fiber laser, Semiconductor laser, Polazization additive-pulse mode locking, Raman laser, MOPA
相關次數: 點閱:378下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著時代進步,雷射的應用越來越廣泛,從工業用的高功率雷射到醫療用的脈衝雷射、以及檢測物質的拉曼雷射,生活中人們的需求也越來越多,有些人想尋求醫療美容的幫助滿足自身需求,有些人想要透過生物檢測來了解自身是否健康,回歸到雷射,生物樣品大多數由水組成,且在1064 nm左右的雷射波長下,紅外光波段不會受到組織中的水、含氧血中蛋白、脫氧血紅蛋白及黑色素吸收,可以盡可能降低生物樣品被雷射損害,因此1064 nm雷射在近幾年是熱門的波段選項。實驗最終測得長度為16 cm的摻鐿光纖可以使輸出功率達到0.9 mW、中心波長為1046 nm 、3 dB損耗為0.16 nm、雷射OSNR為39.6 dB,再以此為基礎建構鎖模脈衝雷射,原先只有7.3公尺的共振腔,脈衝重複率為18.5 MHz、脈衝寬度為13.8 ns,接著使雷射共振腔增長為1069 m,得到脈衝重複率為181.81 kHz、脈衝寬度為640.8 ns,與研製主振盪高功率摻億光纖放大器結合後,得到最大平均功率2033 mW、中心波長為1052.6 nm、脈衝重複率為181.81 kHz、脈衝寬度為1009.3 ns、OSNR為34 dB、脈衝能量與尖峰功率分別為11.23 μJ與11.12 W,接著將此輸出雷射進行老鼠實驗與對比一般市售醫療雷射的差別。
使用環形雷射架構研製適用於拉曼感測的1064 nm雷射光源,結合高功率光纖放大器,加上布拉格光纖光柵使波長變為1063.88 nm 、輸出功率為3.35 mW、3 dB損耗為0.12 nm,結合MOPA架構,將半導體光放大器電流固定為300 mA 、功率放大器的兩顆泵激雷射電流在5A時能使整個架構輸出功率達至1269 mW,並且比較台灣大學凝態中心的顯微拉曼光源,我們將高功率放大器電流調整至1.6 A使輸出功率與凝態中心一樣為55 mW、3 dB損耗為0.24 nm、OSNR為40.8 dB,並結合拉曼光譜儀對SI 111切片量測,也將市售拉曼光譜儀的光源與自製光源進行對比。


With the advancement of the times, the applications of lasers have become more and more extensive, from high-power lasers for industrial use to pulsed lasers for medical use, as well as Raman lasers for detecting substances. For example, some people seek for medical cosmetic help to meet their own needs, and some people take biological detection to monitor their healthy condition. In the experiment, most biological samples are composed of water. With a laser wavelength at 1064 nm, infrared optical band was not absorbed by water, oxygenated blood proteins, deoxygenated hemoglobin and melanin in tissues, which minimizes the damage of biological samples by lasers. Therefore, the 1064 nm laser is a popular band in recent years. In the experiment, we measured that the ytterbium-doped fiber with a length of 16 cm achieved an output power of 0.9 mW, a center wavelength of 1046 nm, a 3 dB loss of 0.16 nm, and a laser OSNR of 39.6 dB. Based on the result, a mode-locked pulse laser was constructed. The original resonant cavity was only 7.3 meters, the pulse repetition rate was 18.5 MHz, while the pulse width was 13.8 ns. Moreover, the laser resonant cavity was increased to 1069 m, and the pulse repetition rate was 181.81 kHz, while the pulse width was 640.8 ns. When the combination of the main oscillation high-power 100 million-doped fiber amplifier is developed, the maximum average power is 2033 mW, the center wavelength is 1052.6 nm, the pulse repetition rate is 181.81 kHz, the pulse width is 1009.3 ns, the OSNR is 34 dB, and the pulse energy and peak power are 11.23 μJ and 11.12 W, respectively. What’s more, the mouse experiment was performed on this output laser, and the difference between the general commercial medical lasers was compared.
A 1064 nm laser light source suitable for Raman sensing was developed by using a ring laser architecture. Combined with a high-power fiber amplifier, a fiber Bragg grating was added to make the wavelength change to 1063.88 nm, while the output power was 3.35 mW, and the 3 dB loss was 0.12 nm. On the other hand, combined with the MOPA architecture, the semiconductor optical amplifier current was fixed at 300 mA, and the two pumping laser currents of the power amplifier made the output power of the entire architecture reach 1269 mW at 5A. As for the light source, we adjusted the high power amplifier current to 1.6 A to make the output power of 55 mW the same as the condensed state center, while the 3 dB loss was 0.24 nm, and the OSNR was 40.8 dB. Finally, the light source of the commercially available Raman spectrometer was compared with the self-made light source.

第一章 緒論 1 1.1緒論 1 1.2研究動機 2 1.3論文架構 3 第二章 光纖雷射與光主被動元件簡介 4 2.1光纖雷射 4 2.1.1光纖雷射原理 4 2.1.2摻鐿光纖放大原理 7 2.2光纖鎖模脈衝雷射 10 2.2.1 Q開關脈衝雷射原理 10 2.2.2 鎖模脈衝雷射原理 12 2.2.3 偏振疊加波鎖模雷射 13 2.3被動元件簡介 14 2.3.1 光耦合器 14 2.3.2 光隔離器 15 2.3.3 光循環器 16 2.3.4 分波多功器 16 2.3.5 極化控制器 17 2.3.6光纖布拉格光柵 18 2.4文獻探討 18 第三章 鎖模脈衝摻鐿雷射 22 3.1半導體雷射特性量測 22 3.1.1半導體雷射簡介 22 3.1.2 半導體雷射特性量測 23 3.2鎖模脈衝摻鐿光纖雷射 25 3.2.1光纖環形雷射架構 25 3.2.2鎖模摻鐿光纖環形雷射架構 31 3.3半導體光放大器 36 3.3.1半導體光放大器簡介 36 3.3.2半導體光放大器特性量測 37 3.4鎖模脈衝雷射結合半導體光放大器 39 3.4.1鎖模脈衝雷射結合半導體光放大器架構及特性量測 39 第四章 主振盪高功率摻鐿光纖放大器及脈衝雷射應用 44 4.1主振盪高功率放大器 44 4.1.1主振盪功率放大器與多級放大器介紹 44 4.1.2高功率泵激雷射光源介紹 46 4.1.3摻鐿光纖放大器泵機型態簡介 48 4.2高功率放大器架構研製與參數量測 52 4.2.1高功率放大器架構 52 4.2.2高功率放大器參數量測 53 4.3鎖模脈衝摻鐿雷射結合高功率放大器 54 4.3.1脈衝雷射結合放大器架構及特性量測 54 4.3.2脈衝雷射結合放大器應用 59 第五章 1064nm拉曼光源結合高功率摻鐿光纖放大器 63 5.1環形1064nm雷射研製與特性量測 63 5.2環形1064 nm雷射結合MOPA架構與特性量測 65 5.3 1064nm拉曼光譜儀 68 5.3.1 1064nm拉曼頻譜簡介及應用分析 68 5.3.2 1064nm拉曼光頻譜架構 72 第六章 結論與未來展望 76 6.1結論 76 6.2未來展望 77 參考文獻 80

[1] M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno,"Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-µm probe, " Optics Express, vol. 17, no. 15, pp. 12385-12396, 2009.
[2] K. C. Kao and G. A. Rockham, "Dielectric-fibre surface waveguides for optical frequencies," IEE Proceedings J - Optoelectronics, vol. 133, no. 3, pp. 191-198, 1986.
[3] Sultana, J., Islam, M. S., Islam, M. R., and Abbott, D. "High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications," Electronics Letters ,vol. 54 , no. 2 , pp.61-62,2018
[4] A. Barrias, G. Rodriguez, J. Casas, and S. Villalba, "Application of distributed optical fiber sensors for the health monitoring of two real structures in Barcelona," Structure and infrastructure engineering ,vol. 14, no. 7 , pp. 967-985,2018.
[5] Y. Ozeki, T. Asai, J. Shou and H. Yoshimi, "Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser, " IEEE Journal of selected topics in quantum electronics , vol. 25, pp. 1-11, 2019.
[6] M. Fujiwara, H. Hamaguchi, and M. Tasumi, "Measurements of spontaneous raman scattering with Nd:YAG 1064-nm laser light," Appl. Spectrosc. Pp. 137- 139, 1986.
[7] M. Sahrai, S. H. Asadpour, A. Eslami-Majd, and R. Sadighi-Bonabi, "Lasing without population inversion in an Er3+ doped YAG crystal," Journal of modern optics, vol.59, no.05, pp. 446-454, 2011.
[8] P.C. Becker, N.A. Olsson, and J.R. Simpson, "Erbium-doped fiber amplifiers: fundamentals and technology, " San Diego, USA Academic Press, 1999.
[9] T. Akagi, S. Araki, Y. Honda,A. Kosuge, T. Omori, H. Shimizu, N, Terunuma, J. Urakawa, T. Takahashi, R. Tanaka, Y. Uesugi, H. Yoshitama, Y. Hosaka, K. Sakaue and M. Washio, " Nuclear instruments and methods in physics research section b-beam interactions with materials and atoms," vol. 402, pp. 370-372, 2022
[10] J. P., E. Magnus, N. Lars and L. Fredrik. "Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber, " Journal of the Optical Society of America ,B. 27. 338, 2010.
[11] K. Wayne, “End-pumped solid-state lasers,” ,2010.
[12] 許宏銘,“摻鐿光纖雷射/放大器與短脈衝產生研究”,臺灣科技大學電子工研究所碩士論文,2020。
[13] I. G. Maryam and P. Parviz, "Gain Saturation in Optical Fiber Laser Amplifiers," 2016.
[14] T.V. Andersena, P. Pérez, Millánb, S. R. Keidinga, S. Aggerc, R.Duchowiczd and M.V.Andrésb, "All-fiber actively Q-switched Yb-doped laser," Optics Communications, vol. 260, issue 1, pp. 251-256, Apr., 2006.
[15] A. González-Garcíaab, B. Ibarra-Escamillaa, O. Pottiezc, E. A. Kuzina, F. Maya-Ordoñeza, M. Durán-Sánchezd, C. Denge, J. W. Hause, Peter and E. Powerse, "High efficiency, actively Q-switched Er/Yb fiber laser," Optics & laser technology, vol. 48, pp. 182-186, Jun., 2013.
[16] F. J. McClung and R. W. Hellwarth, "Characteristics of giant optical pulsations from ruby," Proceedings of the IEEE, vol. 51, no. 1, pp. 46-53, 1963.
[17] D. Liang, and B. Samson, "Fiber lasers: basics, technology, and applications," Crc Press, Florida, USA, 2016.
[18] P. Myslinski, J. Chrostowski, J. A. Koningstein and J. R. Simpson, "High power Q-switched erbium doped fiber laser," IEEE J Quant. Electron., vol. 28, no. 1, pp. 371-377, 1992.
[19] P. D. Dragic, "Injection-seeded Q-switched fiber ring laser," IEEE photonics technology letters, vol. 16, no. 8, Aug., 2014.
[20] R. Paschotta, "Field Guide to Laser Pulse Generation, " SPIE Press, Bellingham, WA, 2008.
[21] Y. Zhang, Y. Qi, S. Yang, N. Luan , Z. Bai , J. Ding and Y. Wang, Z. Lu, "High pulse energy, narrow-linewidth all-fiber 1064 nm picosecond master oscillator power amplifier system, " Optics and Laser Technology, 147 .107636, 2021
[22] A. A. Shakaty, J. K. Hmood, B. R. Mahdi, R. I. Mahdi and A. A. Al-Azzawi, "Q-switched erbium-doped fiber laser based on nanodiamond saturable absorber," Optics and laser technology, vol. 146, 2021.
[23] T. Ennejah and R. Attia , ''Mode locked fiber lasers,'' Current Developments in Optical Fiber Technology, London, 2013.
[24] P. F. McManamon, ''Field guide to lidar,'' SPIE Press, 2015.
[25] 陳鴻文,“具有高功率輸出之短脈衝光纖雷射: 設計與實現”,台灣科技大學電子工程研究所碩士論文,2017。
[26] K. Denis and B.Sergey, ''Generation of dissipative solitons in femtosecond fiber lasers,'' Optoelectronics, Instrumentation and Data Processing. pp. 399-415,2013.
[27] K. Gerd and K. Fu-Jen, ''Biophotonic applications of optical communication devices,'' Proc SPIE. 6991, 2008.
[28] C. J. Norwood and J. D. Dickens, ''The effect of vibration isolator properties and structural stiffness on isolator performance,'' Journal of vibration and control, vol. 4, no. 3, pp. 253-275, 1998.
[29] J. J. Pan, “Tunable Er3+-doped fibre ring laser using fibre grating incorporated by optical circulator or fibre coupler”, Elecronics Letters, vol. 31, issue 14, pp. 1164-11656, July 1995.
[30] Xens, ''Operating principle of the WDM technology,'' WDM operating principle, 2014.
[31] 張偉庭,“兼具高功率與長脈衝之摻鐿光纖雷射:設計與實現”,台灣科技大學電子工程研究所碩士論文,2021。
[32] Z. M. Huang, Q. Shu, R. M. Tao , Q. H. Chu, Y. Luo, D. L. Yan, X. Feng, Y. Liu, W. J. Wu, H. Y. Zhang, H. H. Lin, J. J. Wang, and F. Jing, ''5kW Record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier,'' IEEE Photonics technology letters, Vol. 33, No. 21, Nov. 1, 2021
[33] Z. Wu, Q. Wei, P. Huang, S. Fu, D. Liu and T. Huang, ''Nonlinear polarization evolution mode-locked YDFL aased on all-pm fiber cavity,'' IEEE Photonics Journal, Vol.12, No. 12, Apr., 2020.
[34] S. Thulasi and S. Sivabalan, ''All-Fiber Femtosecond mode-locked Yb-laser with few-mode fiber as a saturable absorber,'' IEEE Photonics technology letters, Vol. 33, No. 5, Mar. 1, 2021.
[35] 許騰元,“利用軟微影技衙製作可熱調控分佈式回饋雷射” ,國立中山大學物理學系研究所碩士論文,2013。
[36] T. Aihara, T. Hiraki, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, and S. Matsuo, "Membrane buried-heterostructure DFB laser with an optically coupled 111-V/Si waveguide," Opt. Express, vol. 27, no.25, pp. 36438-36448, 2019
[37] G. Wang, SQ. Chen and H. Yang, "An analytical study on bistability of Fabry-Perot semiconductor optical amplifiers," Photonic sensor, vol. 6, no. 3, pp. 268-273, 2016.
[38] P. R. Kaczmarek, G. Sobon, J. Z. Sotor, A. J. Antonczak and K. M. Abramski, "Fiber-MOPA sources of coherent radiation," Bulletin of the polish academy of sciences technical sciences, vol. 58, no. 4, pp. 4885-489, 2010.
[39] C. Shi, R. T. Su, H. W. Zhang, B. L. Yang, X. L. Wang, P. Zhou, X. J. Xu and Q. S. Lu, "Experimental study of output characteristics of bi-directional pumping high power fiber amplifier in different pumping schemes," IEEE Photonics journal, vol. 9, no. 3, 2017.
[40] R. Hui and M. O'Sullivan, "Fundamentals of optical devices," Fiber Optic Measurement Techniques, 2009.
[41] J. M. Gong, T. Guo, Y. Q. Yang and H. B. Liu, "Double-pump cascade tellurite-based Raman fiber amplifier based on polynomial fitting of gain spectrum," Journal of infrared and millimeter waves, vol. 35, pp. 154-159, 2016.
[42] 楊崇榮,“通過大氣電漿處理與低溫退火對聚甲丙烯酸甲酯(PMMA)微流道進行表面活化鍵合暨血液檢測之研究”,台灣科技大學機械工程研究所碩士論文,2021。
[43] J. Zuk, M. Kulik, GT. Andrews, H. Kiefte, MJ. Clouter, R. Goulding, NH. Rich and E. NossarzewskaOrlowska, "Characterization of porous silicon by Raman scattering and photoluminescence," Thin solid films, vol. 297, no. 1-2, pp. 106-109, 1997.

無法下載圖示 全文公開日期 2027/09/26 (校內網路)
全文公開日期 2027/09/26 (校外網路)
全文公開日期 2027/09/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE