簡易檢索 / 詳目顯示

研究生: 廖信銓
Liao Xin-Quan
論文名稱: 微流體於細菌視紫質光電晶片製備之應用
Application of Microfluidics on Preparation of Bacteriorhodopsin Photoelectric Chips
指導教授: 陳秀美
Hsiu Mei Chen
口試委員: 王鐘毅
Chung-Yih Wang
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 98
中文關鍵詞: 細菌視紫質紫膜微流體控制技術
外文關鍵詞: bacteriorhodopsin, purple membrane, microfluidics
相關次數: 點閱:376下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

紫膜(purple membrane, PM)為Halobacterium salinarum細胞膜的一部份,其內部的細菌視紫質(bacteriorhodopsin, BR)受光激發後可產生光電流響應。本研究結合液滴塗覆法及微流體塗覆二種方式進行PM於基材上的塗覆,探討不同塗覆方法及不同架橋對PM晶片製備的影響,並以AFM及微分光電流響應進行分析。所使用架橋包括活化avidin (activated avidin, OA)、氧化石墨烯(graphene oxide, GO)及GO-OA複合物。其中以GO作為架橋製備PM晶片時,所得到光電流響應在所有PM晶片製程中為最小的光電流響應。對於OA架橋,以微流塗覆OA後再分別以液滴塗覆法或微流塗覆b-PM後,所得到光電流響應分別約為1000 nA/cm2及600 nA/cm2。對於GO-OA複合架橋,以微流體塗覆GO-OA複合物後再分別以液滴塗覆法及微流體塗覆b-PM,所得到光電流響應分別約為1267 nA/cm2及1017 nA/cm2。而以液滴塗覆法分別先塗覆OA及GO-OA複合物後,再以液滴塗覆法塗覆b-PM,所得到光電流響應分別約為1462 nA/cm2及1511 nA/cm2,表示GO加入OA架橋中有助於b-PM的貼附,以及雙重液滴塗覆法的製程具有較好b-PM塗覆效果。另外,探討剪應力流場對使用雙重液滴塗覆法製程及以OA或GO-OA複合物為架橋所製備PM晶片的影響。對於OA架橋,以高流速清洗後可達到接近單層b-PM貼附;而以GO-OA複合物為架橋所製備的PM晶片經由低流速清洗後,即可達到幾乎完全覆蓋填滿、單一方向且單層貼附的b-PM,此單一方向為ITO/EC-CP定向,單層b-PM的覆蓋率可由21 %增加至91 %。以微分光電流響應分析,可得知ITO/EC-CP定向之單層b-PM所貢獻的光電流響應約為75 %,而另外25 %的光電流響應則是由疊層b-PM所提供。此外,此單層、高覆蓋率及單一方向貼附之PM晶片具有良好的重複檢測穩定度,經由30次微分光電流響應檢測後其光電流響應仍然維持不變,並可進行後續的biotin-E. coli抗體固定化及E. coli的微流體檢測。


Purple membrane (PM) is a cellular component of Halobacterium salinarum containing bacteriorhodopsin, which generates photoelectric responses after being excited by light. In this study, either drop-casting or microfluidics-based fabrication was employed to prepare PM chips with different linkers to investigate the effect of fabrication methods and linkers on the chip characteristics. Both AFM analysis and the measurement of differential photocurrents generated by PM chips were conducted to evaluate the fabrications. Three different linkers were investigated, including activated avidin (OA), graphene oxide (GO) and GO-OA complex. The PM chips fabricated with GO as the linker yielded the lowest photocurrent. On the OA linker fabricated on substrates with microfluidics, the subsequent coating of biotinylated PM (b-PM) by drop-casting and with microfluidics resulted in the production of 1000 nA/cm2 and 600 nA/cm2 photocurrent densities, respectively. On the other hand, the coating of b-PM on the microfluidics-fabricated GO-OA linker by drop-casting and with microfluidics yielded 12670 nA/cm2 and 1017 nA/cm2 photocurrent densities, respectively. For double drop-casting processes, 1462 nA/cm2 and 1511 nA/cm2 were achieved by drop-casting b-PM on drop-casted OA and GO-OA linkers, respectively. These results suggest the addition of GO in linkers facilitated b-PM coating and the processes with double drop-casting resulted in the best b-PM fabrication. Furthermore, we investigated the effect of shear flow in microfluidics on the PM chips prepared by drop-casting both the linker and b-PM. For the OA linker, a near monolayer of b-PM was achieved at a high flow rate. However, a slow shear flow was sufficiently enough for the GO-OA linker to produce a monolayer of b-PM with full coverage and uniform orientation (ITO/EC-CP) on substrates. The monolayer coverage of b-PM on substrates was increased from 21% to 91% with the slow shear flow over the PM chips prepared with double drop-casting and the GO-OA linker. In addition, the photocurrent analysis indicated that the as-prepared PM chip maintained its photoelectric activity after 30 repetitive measurements and concluded that 75% and 25% of the chip photocurrent were attributed to the monolayer and stacks of PM, respectively. The use of the as-prepared PM chip to immobilize anti-Escherichia coli antibodies and to subsequently detect E. coli was also demonstrated.

中文摘要 I 英文摘要 II 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 縮寫名對照表 XI 第一章 緒論 1 第二章 文獻回顧 3 2-1 石墨烯與氧化石墨烯簡介 3 2-1-1 石墨烯特性與結構 4 2-1-2 氧化石墨烯結構 4 2-1-3 氧化石墨烯之特性 6 2-1-3-1 氧化石墨烯之兩親性 6 2-1-3-2 氧化石墨烯之界面活性 7 2-1-4 氧化石墨烯之生物功能化及生物技術應用 8 2-2 嗜鹽古生菌與細菌視紫質之簡介 11 2-2-1 細菌視紫質之結構 11 2-2-2 細菌視紫質之光循環 12 2-2-3 細菌視紫質之光電響應 13 2-3 微流體技術(microfluidics)簡介 17 2-3-1 微觀尺度下流體之特性 17 2-3-1-1 界面張力 19 2-3-1-2 流體滑移現象 20 2-3-1-3 界面電現象 21 2-3-2 微流體裝置中驅動流體方法 22 2-3-3 微流道模具製作 22 2-3-3-1 聚二甲基矽氧烷 23 2-3-3-2 3D列印技術 24 2-3-4 微流體技術於生物技術上之應用 26 第三章 實驗 28 3-1 實驗目的 28 3-2 實驗設備 29 3-3 實驗流程 30 3-4 微流道設計 31 3-4-1 以PDMS製作微流道 31 3-4-2 以3DP製作微流道 31 3-5 量測 32 3-5-1 微分光電流 32 3-5-2 AFM分析與操作 33 第四章 結果與討論 35 4-1 以微流體系統製備PM晶片之探討 35 4-1-1 以OA為架橋之PM晶片製備 36 4-1-1-1 OA塗覆條件之探討 37 4-1-1-2 b-PM塗覆條件之探討 39 4-1-2 以 GO為架橋之PM晶片製備 43 4-1-2-1 GO塗覆條件之探討 43 4-1-2-2 PM塗覆條件之探討 48 4-1-3 以GO-OA為架橋之PM晶片製備 53 4-2 以液滴塗覆法製備PM晶片之探討 55 4-3 微流清洗對以GO-OA複合物為架橋之PM晶片的影響 56 4-3-1 以AFM分析微流對晶片上PM形貌之影響 59 4-3-2 微流清洗對PM晶片微分光電流響應之影響 71 4-3-3 不同PM晶片製程對光電流之彙整比較 75 4-4 在微流體系統中以PM晶片檢測E. coli 76 第五章 結論 78 第六章 參考文獻 80

Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N.G.; Wu, T.; Li, L.; Li, J.; Gan, L.H. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 2011, 7, 1569-1578.
Brodie, B.C. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859, 149, 249-259.
Chen, B.; Liu, M.; Zhang, L.; Huang, J.; Yao, J.; Zhang, Z. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. Journal of Materials Chemistry 2011, 21, 7736-7741.
Chen, H.M.; Lin, C.J.; Jheng, K.R.; Kosasih, A.; Chang, J.Y. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids and Surfaces B: Biointerfaces 2014, 116, 482-488.
Comina, G.; Suska, A.; Filippini, D. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer. Lab on a Chip 2014, 14, 2978-2982.
Dragone, V.; Sans, V.; Rosnes, M.H.; Kitson, P.J.; Cronin, L. 3D-printed devices for continuous-flow organic chemistry. Beilstein Journal of Organic Chemistry 2013, 9, 951-959.
Eijkel, J. Liquid slip in micro- and nanofluidics: recent research and its possible implications. Lab on a Chip 2007, 7, 299-301.
Erkal, J.L.; Selimovic, A.; Gross, B.C.; Lockwood, S.Y; Walton, E.L.; McNamara, S.; Martin, R.S.; Spence, D.M. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab on a Chip 2014, 14, 2023-2032.
Fan, H.; Wang, L.; Zhao, K.; Li, N.; Shi, Z.; Ge, Z.; Jin, Z. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 2010, 11, 2345-2351.

Geim, A.K.; Novoselov, K.S. The rise of graphene. Nature Materials 2007, 6, 183-191.
Hampp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews 2000, 100, 1755-1776.
Huang, B.; Wu, H.; Kim, S.; Zare, R.N. Coating of poly(dimethylsiloxane) with n-dodecyl-[small beta]-d-maltoside to minimize nonspecific protein adsorption. Lab on a Chip 2005, 5, 1005-1007.
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. Journal of the American Chemical Society 1958, 80, 1339-1339.
Jakeway, S.C.; de Mello, A.J.; Russell, E.L. Miniaturized total analysis systems for biological analysis. Fresenius Journal of Analytical Chemistry 2000, 366, 525-539.
Kawamura, I.; Ohmine, M.; Tanabe, J.; Tuzi, S.; Saitô, H.; Naito, A. Dynamic aspects of extracellular loop region as a proton release pathway of bacteriorhodopsin studied by relaxation time measurements by solid state NMR. Biochimica et Biophysica Acta (BBA) – Biomembranes 2007, 1768, 3090-3097.
Khorana, H.G. Bacteriorhodopsin, a membrane protein that uses light to translocate protons. Journal of Biological Chemistry 1988, 263, 7439-7442.
Kim, J.; Cote, L.J.; Kim, F.; Yuan, W.; Shull, K.R.; Huang, J. Graphene oxide sheets at interfaces. Journal of the American Chemical Society 2010, 132, 8180-8186.
Lagally, E.T.; Emrich, C.A.; Mathies, R.A. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab on a Chip 2001, 1, 102-107.
Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N. A graphene platform for sensing biomolecules. Angewandte Chemie International Edition 2009, 48, 4785-4787.
Manz, A.; Graber, N.; Widmer, H.M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators B: Chemical 1990, 1, 244-248.
Mostafa, H.I.; Váró, G.; Tóth-Boconádi, R.; Dér, A.; Keszthelyi, L. Electrooptical measurements on purple membrane containing bacteriorhodopsin mutants. Biophysical Journal 1996, 70, 468-472.
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
Paredes, J.I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560-10564.
Pavlidis, I.V.; Patila, M.; Bornscheuer, U.T.; Gournis, D.; Stamatis, H. Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends in Biotechnology 2014, 32, 312-320.
Rodriguez, I.; Spicar-Mihalic, P.; Kuyper, C.L.; Fiorini, G.S.; Chiu, D.T. Rapid prototyping of glass microchannels. Analytica Chimica Acta 2003, 496, 205-215.
Rossier, J.S.; Girault, H.H. Enzyme linked immunosorbent assay on a microchip with electrochemical detection. Lab on a Chip 2001, 1, 153-157.
Sato, K.; Hibara, A.; Tokeshi, M.; Hisamoto, H.; Kitamori, T. Microchip-based chemical and biochemical analysis systems. Advanced Drug Delivery Reviews 2003, 55, 379-391.
Shamai, R.; Andelman, D.; Berge, B.; Hayes, R. Water, electricity, and between… on electrowetting and its applications. Soft Matter 2008, 4, 38-45.
Sia, S.K.; Whitesides, G.M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003, 24, 3563-3576.
Sur, U.K. Graphene: a rising star on the horizon of materials science. International Journal of Electrochemistry 2012, 2012, 237689.
Tandon, V.; Bhagavatula, S.K.; Nelson, W.C.; Kirby, B.J. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge. Electrophoresis 2008, 29, 1092-1101.
Tarn, M.D.; Pamme, N. Microfluidics. 2014, DOI: 10.1016/b978-0-12-409547 -2.05351-8.
Verma, S.; Mungse, H.P.; Kumar, N.; Choudhary, S.; Jain, S.L.; Sain, B.; Khatri, O.P. Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chemical Communications 2011, 47, 12673-12675.
Wang, H.; Zhang, Q.; Chu, X.; Chen, T.; Ge, J.; Yu, R. Graphene oxide–peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angewandte Chemie International Edition 2011, 50, 7065-7069.
Wang, J.-P.; Yoo, S.-K.; Song, L.; El-Sayed, M.A. Molecular mechanism of the differential photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B 1997, 101, 3420-3423.
Wang, J. Vectorially oriented purple membrane: characterization by photocurrent measurement and polarized-fourier transform infrared spectroscopy. Thin Solid Films 2000, 379, 224-229.
Wang, Y.; Li, Z.; Hu, D.; Lin, C.-T.; Li, J.; Lin, Y. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. Journal of the American Chemical Society 2010, 132, 9274-9276.
Weibel, D.B.; Whitesides, G.M. Applications of microfluidics in chemical biology. Current Opinion in Chemical Biology 2006, 10, 584-591.
Weigl, B.H.; Bardell, R.L.; Cabrera, C.R. Lab-on-a-chip for drug development. Advanced Drug Delivery Reviews 2003, 55, 349-377.
Zhou, L.; Jiang, Y.; Gao, J.; Zhao, X.; Ma, L. Graphene oxide as a matrix for the immobilization of glucose oxidase. Applied Biochemistry Biotechnology 2012, 168, 1635-1642.
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials 2010, 22, 3906-3924.
林鼎勝, 3D列印的發展現況. 科學發展, 科技部, 台北市. 2014, 503, 32-37.
陳明宏, 曾繁根, 數位化微流體操縱技術. 科學發展, 科技部, 台北市. 2006, 405, 50-53.
林其融, AFM探討分別以結合氧化石墨烯之親和吸附與共價鍵結作用固定化之紫膜. 國立臺灣科技大學化學工程研究所碩士論文. 2013
林承德, 氧化石墨烯濃度對以親和吸附作用製備細菌視紫質光電晶片之影響. 國立臺灣科技大學化學工程研究所碩士論文. 2013
許遠玲, 氧化石墨烯於紫膜晶片技術之應用. 國立臺灣科技大學化學工程研究所碩士論文. 2012

無法下載圖示 全文公開日期 2020/08/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE