簡易檢索 / 詳目顯示

研究生: 賴惠程
Hui-Cheng Lai
論文名稱: 無線區域網路中多重速率之服務品質控制策略與競爭參數傳輸效能分析
A Multi-rate QoS Control Scheme and Performance Evaluation in Wireless Networks
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 陳添智
Tien-Chi Chen
鍾添曜
Tein-Yaw Chung
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 80
中文關鍵詞: 無線區域網路
外文關鍵詞: EDCAF
相關次數: 點閱:190下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • IEEE 802.11e 為改善服務品質保證的問題,透過改善IEEE 802.11 媒體存取層的協定,並導入兩種新的無線通道存取方式:加強分散式通道存取方式(EDCA)與混合協調控制通道存取方式(HCCA)。因為無線網路通道時變的特性,其可用頻寬與時變的封包傳送速率很容易影響傳送封包的品質。大部份的無線網路產品皆同時提供不同的調變方式與實體層的傳送速度,以適應無線網路環境的需求。一般來說,較低的傳送速率會佔據較長的無線通道傳送時間,並降低系統的性能。這會導致頻寬的浪費與不公平性,且無法提供服務品質保證。本論文應用跨層的觀念並加強EDCAF 協定,提出了加強的 EDCAF 協定稱E2DCAF,同時並提出一個多重速率的離散馬可夫鏈無線通道模型。驗證結果,E2DCAF 能有效改善系統性能與加強封包傳送的公平性。
    另外本論文並同時分析與探討 AIFSN 與 CWmin 競爭參數對無線區域網路系統效能的影響。同時並提出一個參數適應性動態調整方案(ACS)以改善系統效能,此方案能相容於現存的 IEEE 80 2.11e EDCAF並透過調整競爭參數的方式能有效的改善系統的性能並提供服務品質的差異化。


    IEEE 802.11e provides the guaranteed quality of service (QoS) by proving different transmission priorities. IEEE 802.11e improves the media access control layer of IEEE 802.11 to satisfy the different QoS requirements by introducing two new channel access functions: the enhanced distributed channel access (EDCA) and the hybrid coordination function (HCF) controlled channel access (HCCA). The available bandwidth and transmission rate may be easily affected by the signal quality, because the characteristic of communication channel in wireless environment is in random time-variation manner. Therefore, most devices support different transmission rates in wireless network. Generally a station using a lower transmission rate will occupy communication channel for a longer time and degrade system performance, which causes bandwidth waste and unfairness and cannot provide the guaranteed QoS for the stations with higher transmission rates. We propose an enhancing EDCAF (E2DCAF) by consolidating the cross-layer concept and IEEE 802.11e EDCAF protocol; a multirate discrete Markov chain model is developed and analyzed for the system with multiple transmission rates. According to the obtained results, E2DCAF improves performance especially in throughput and fairness. E2DCAF scheduling also makes the different QoS requirements be processed efficiently and flexibly
    This paper also presents a simulation analysis of the influence of the AIFSN and CWmin parameters on the IEEE 802.11 networks and proposes a simple optimal scheme called Adaptive Control Scheme (ACS) which is based on different traffic classes and QoS requirement to improve the WLAN performance. The algorithm is simple and effective in managing QoS WLAN networks. The main objective of this algorithm is to provide an effective and simple tuning mechanism for QoS WLAN, complementary to legend IEEE 802.11e.

    Abstract in Chines………….……………………….IV Abstract in English………………..………….…………….V Acknowledgement……….…………..…………….VI Table of Contents ………………….….…………...VII List of Figures …………….……………….IX List of Tables …………………………..…XII List of Symbols ………………….XIII Chapter 1 Introduction …………….. ..1 1.1 Research Motivation……………...1 1.2 Related Works……………………..2 1.3 Organization of Thesis……………………4 Chapter 2 Background Descriptions……………5 2.1 IEEE 802.11……..……….……...5 2.1.1 DCF (Distributed Coordination Function)…5 2.1.2 PCF (Point Coordination Function) ......6 2.1.3 Limitation of IEEE 802.11 ……………..7 2.2 IEEE 802.11e……… ………..………....8 2.2.1 ACs (Access Categories) ……..…………………8 2.2.2 AIFS (Arbitration InterFrame Space).…9 2.2.3 CWmin and CWmax…………………………10 2.2.4 EDCAF (Enhanced Distributed Channel Access Function)...10 2.2.5 HCCA (HCF Controlled Channel Access)………14 2.3 Performance anomaly…………………………….15 Chapter 3 Performance Evaluation and ACS Scheme ………17 3.1 Formulation ………………...…..17 3.2 Performance Analysis of IEEE 802.11e EDCAF and IEEE 802.11 DCF……………………….. 20 3.2.1 Performance Analysis of IEEE 802.11 DCF ……20 3.2.2 Performance Analysis of IEEE 802.11e EDCAF …23 3.2.3 Discussion …….25 3.3 System Description of Adaptive Control Scheme (ACS).…26 3.4 Performance Evaluation of ACS …30 Chapter 4 The Multi-rate markov chain model and E2DCAF...33 4.1 System Description………………….… ..33 4.2 Multi-Rate Markov Chain Model …………………36 4.2.1 Analysis of transition probabilities……………36 4.2.2 Analysis of E2DCAF system model …………40 4.2.3 Throughput Analysis……………………43 4.3 Evaluating theoretical model ….……………… 45 4.4 Simulation experiments …………………………..48 Chapter 5 Conclusions and Future Research….……57 References ……………………………………………………58 Appendix A Abbreviations and Acronyms …………63

    [1] IEEE. Part 11, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Enhancements for Quality of Service (QoS), ANSI/IEEE Std. 802.11e,” Draft 13.0, Jan. 2005.
    [2] IEEE Std. IEEE 802.11b-1999, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band”.
    [3] A. J. van der Vegt, “Auto Rate Fallback Algorithm for IEEE 802.11a Standard,” HPC Group Faculty of Physics, Utrecht University, July 2002.
    [4] G. Holland, N. Vaidya and P. Bahl, “A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks,” in Proc. of ACM MobiCom 2001, pp. 236–251, July 2001.
    [5] J. Hui and M. Devestsikiotis, “Designing improved MAC packet scheduler for 802.11e WLAN,” in Proc. of IEEE GLOBECOM, vol. 1, pp. 184–189, Dec. 2003.
    [6] L. Romdhani, Q. Ni, T. Turletti, “Adaptive EDCF: enhanced service differentiation for IEEE 802.11 wireless Ad-Hoc networks,” in Proc. of IEEE Wireless Communications and Networking Conference (WCNC’2003), vol. 2, pp. 1373–1378, March 2003.
    [7] F. Cali, M. Conti and E. Gregori, “IEEE 802.11 wireless LAN: Capacity analysis and protocol enhancement,” in Proc. of IEEE INFOCOM, vol. 1, pp. 142–149, March 1998.
    [8] C. Wang, W. Tang, K. Sohraby, and B. Li, “A simple mechanism on MAC layer to improve the performance of IEEE 802.11 DCF,” in Proc. of BROADNETS, pp. 365–374, Oct. 2004.
    [9] Y. Xiao, “Backoff-based priority schemes for IEEE 802.11,” in Proc. of International Conference on Communications (ICC2003), vol. 3, pp. 1568–1572, May 2003.
    [10] J. Prado Pavon and S. N. Shankar, “Impact of Frame Size, number of stations and mobility on the throughput Performance of IEEE 802.11e,” in Proc. of IEEE Wireless Communications and Networking Conference (WCNC’2004), vol. 2, pp. 789–795, March 2004.
    [11] Z. Kong, D. H. K. Tsang, B. Bensaou, and D. Gao, “Performance Analysis of IEEE 802.11e Contention-Based Channel Access,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 10, pp. 2095–2106, Dec. 2004.
    [12] J.W.Robinson and T.S.Randhawa, “Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function,” IEEE Journal on Selected Areas in Communications, vol.22, no.5, pp.917-928, 2004.

    [13] Hayoung Yoon and JongWon Kim, “Saturation Throughput Analysis of IEEE802.11e Contention-Based Channel Access,” in Proc. IEEE HongKong ISPACS, pp.717-720, Dec. 2005.
    [14] Y.C.Tay and K.C.Chua, “A capacity analysis for the IEEE 802.11 MAC protocol,” Wireless Networks, pp.159-171, Jul. 2001.
    [15] A.T.Veres, M.Barry Campbell, and L.H.Sun, “Supporting service differentiation in wireless packet networks using distributed control,” IEEE Journal on Selected Areas in Communications, vol.19, no.10, pp.281-2093. Oct. 2001.
    [16] L.Gannoune, and S.Robert, “Dynamic tuning of the contention window minimum (CWmin) for ehanced service differentiation in IEEE 802.11 wireless ad-hoc networks,” Proc. IEEE PIMRC, vol.1, pp.311-317, Sept. 2004.
    [17] L.Romdhani, Qiang Ni, and T.Turletti, “Adaptive EDCF: enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks,” IEEE Wireless Communications and Networking, vol.2, pp. 1373-1378, March 2003.
    [18] L.Bononi, M.Conti, and E.Gregori, “Runtime Optimization of IEEE 802.11 WLANs Performance,” IEEE Transactions on Parallel and Distributed. Systems, vol.15, no.1, pp.66-80, January 2004.
    [19] H.Ma, X.Li, H.Li, P.Zhang, S.Luo, C.Yuan, “Dynamic optimization of IEEE 802.11 CSMA/CA based on the number of competing stations,” Proc. IEEE ICC, vol.1, pp.191-195, June 2004.
    [20] Chonggang Wang, Weiwen Tang, Kazem Sohraby, and Bo Li, “A simple mechanism on MAC layer to improve the performance of IEEE 802.11 DCF,” Proceeding of BroadNet, pp. 365-374, Oct. 2004.
    [21] Filali, Fethi, “Dynamic and efficient tuning of IEEE 802.11 for multimedia applications,” PIMRC 2001, 15th IEEE international symposium on personal, indoor and mobile radio communications, vol.2, pp.910-914, Sept. 2004.
    [22] Jianhua He,Dritan Kaleshi, Alistair Munro, Michael Barton, “Management of services differentiation and guarantee in IEEE 802.11e wireless LANs,” Proc. IEEE VTC Spring, vol.3, pp.2023-2027, June 2005.
    [23] S. El Housseini, and H.Alnuweiri, “Adaptive Contention-Window MAC Algorithms for QoS-Enabled Wireless LANs,” IEEE International Conference on Wireless Networks, Communications and Mobile Computing, vol.1, pp.368-374, June 2005.
    [24] Veres A., Campbell A.T., Barry M. and Li-Hsiang Sun, “Supporting service differentiation in wireless packet networks using distributed control,” IEEE Journal on Selected Areas in Communications, vol.19, no.10, pp.2081-2093. Oct. 2001.

    [25] Yi Liu, Pawar Shamsher Singh, Assi Chadi, Agarwal Anjali, “Dynamic Admission and Congestion Control for Real-time Traffic in IEEE 802.11e Wireless LANs,” Wireless and Mobile Computing, Networking and Communications, pp.419-426, June 2006.
    [26] Cali F., Conti M., Gregori E., “Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Throughput Limit,” IEEE/ACM Transactions on Networking, vol. 8, no.6, pp. 785-799, Dec. 2000.
    [27] Jin Boo Kim, Jeong Ho Kim, Young Ah Song, Jeong Geun Kim “A self-Tuning Contention Resolution Scheme for IEEE 802.11 Wireless LAN,” The 8th International Conference Advanced Communication Technology, vol.1, pp.565-569, Feb. 2006.
    [28] Hui Ma, Xing Li, Hewu Li, Peiyun Zhang, Shixin Luo, Cong Yuan, “Dynamic optimization of IEEE 802.11 CSMA/CA based on the number of competing stations,” IEEE International Conference on Communications, vol.1, pp.191-195, June 2004.
    [29] Fallah, Y.P, Alnuweiri, H.M, “Enhanced Controlled-Access and Contention-Based Algorithms for IEEE 802.11e Wireless LANs,” International Conference on Wireless Networks, Communications and Mobile Computing, vol.1 , pp.409-414, June 2005.
    [30] Freitag J, da Fonseca, N.L.S., de Rezende, J.F. “Tuning of 802.11e Network Parameters,” Communication Letters, IEEE, vol.10, no.8, pp.611-613, Aug. 2006.
    [31] Frikha M., Ghandour F. “Quality of service improvement in 802.11e: Conditioned Enhanced Distributed Coordination Function (CEDCF),” Information and Communication Technologies, vol.2, pp.3228-3232, April 2006.
    [32] Frikha M., Fatma Ben Said, Maalej L., Tabbana F. “Enhancing IEEE 802.11e standard in congested environments,” Proceedings of the Advanced International Conference on Telecommunications and International Conference on Internet and Web Applications and Services, pp.78-78, Feb. 2006.
    [33] Jain-Shing Liu, Chun-Hung Richard Lin “Performance Improvements with a P-Persistent Enhanced DCF for WLANs,” Vehicular Technology Conference, vol.3 pp.1151-1155, 2006.
    [34] Qiuyan Xia, Mounir Hamdi “Contention Window Adjustment for IEEE 802.11 WLANs: A Control-Theoretic Approach,” IEEE International Conference on Communications, vol.9, pp.3923-3928, June 2006.
    [35] Lingzhi Sheng, Wen Lei, Wei Huangfu, Xinyun Zhou, Weiming Cheng, Zhimei Wu, Limin Sun, “Performance Analysis and Enhancement for Priority Based IEEE 802.11 Network,” IEEE International Conference on Communications, vol.10, pp.4768-4773, June 2006.

    [36] Chiapin Wang, Po-Chiang Lin, Tsungnan Lin “A Cross-Layer Adaptation Scheme for Improving IEEE 802.11e QoS by Learning,” IEEE Transactions on Neural Networks, vol.17, no.6, pp.1661-1665, Nov. 2006.
    [37] Chen X., Zhai H., Tian X., Fang Y., “Supporting QoS in IEEE 802.11e Wireless LANs,” IEEE Transactions on Wireless Communications, vol.5 no.8, pp.2217-2227, Aug. 2006.
    [38] Lopez Toledo A., Vercauteren T., Xiaodong Wang, “Adaptive Optimization of IEEE 802.11 DCF Based on Bayesian Estimation of the Number of Competing Terminals,” IEEE Transactions on Mobile Computing, vol.5, no. 9, pp.1283-1296, Sept. 2006.
    [39] Abu-Sharkh O., Twefik A. H., “Throughput Evaluation and Enhancement in 802.11 WLANs with Access Point,” Vehicular Technology Conference, vol.2, pp.1338-1341, June 2005.
    [40] Jianhua He, Kaleshi Dritan, Munro Alistair, Barton Michael, Zuoyin Tang, Zongkai Yang “management of services differentiation and guarantee in IEEE 802.11e wireless LANs,” Proc. IEEE Vehicular Technology Conference, vol. 3, pp. 2023-2027, June 2005.
    [41] G. Bianchi, “IEEE 802.11 Saturation throughput Analysis,” IEEE Communications Letters, vol. 2, no. 12, pp. 318–320, Dec. 1998.
    [42] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 535–547, March 2000.
    [43] Z. Tao, S. Panwar, “An analytical model for the IEEE 802.11e enhanced distributed coordination function,” in Proc. of International Conference on Communications (ICC2004), vol. 7, no. 1, pp. 4111–4117, June 2004.
    [44] Y. Xiao, “Performance Analysis of IEEE 802.11e EDCF under Saturation Condition,” in Proc. of International Conference on Communications (ICC2004), vol. 1, pp. 170–174, June 2004.
    [45] H. Zhu and I. Chlamtac, “An Analytical Model for IEEE 802.11e EDCF Differential Services,” in Proc. of ICCCN, pp. 163–168, Oct. 2003.
    [46] Y. Ge and J. Hou, “An analytical model for service differentiation in IEEE 802.11,” in Proc. of International Conference on Communications (ICC2003), vol. 2, pp. 1157–1162, May 2003.
    [47] J. Hui and M. Devetsikiotis, “A Unified Model for the Performance Analysis of IEEE 802.11e EDCA,” IEEE Transactions on Communications, vol. 53, no. 9, pp. 1498–1510, Sept. 2005.
    [48] Y. Lin and V. W. S. Wong, “Saturation Throughput of IEEE 802.11e EDCA Based on Mean Value Analysis,” in Proc. of IEEE Wireless Communications and Networking Conference (WCNC’2006), vol.1, pp. 475–480, April 2006.
    [49] Gion Reto Cantieni, Qiang Ni, Chadi Barakat, Thierry Turletti, “Performance analysis under finite load and improvements for multirate 802.11,” Computer Communications on Performance issues of Wireless LANs, PANs and ad hoc networks, vol.28, no.10, pp.1195-1109, June 2005.
    [50] D.Y.Tang, Tae Jin Lee, Kyunghun Jang, Jin-Bong Chang and Sunghyun Choi, “Performance Enhancement of Multi-Rate IEEE 802.11 WLANs with Geographically-Scattered Stations,”IEEE Transactions on Mobile Computing, vol.5 no.7, pp.906-919, July 2006.
    [51] C. T. Chou, K. G. Shin and N.S. Shankar, “Contention-Based Airtime Usage Control in Multirate IEEE 802.11 Wireless LANs,” IEEE Transactions on Networking, vol.14, no.6, pp.1179-1192, Dec. 2006.
    [52] Lee,Bih-Hwang and Lai,Hui-Cheng, “Performance Analysis of Optimum Scheme for IEEE 802.11eEDCAF,” in 2006 ICS Conference, vol.2, pp..507-512, Jan. 2007.
    [53] Lee,Bih-Hwang and Lai,Hui-Cheng, “An Improved EDCAF for Multirate Cross-layer Design in Wireless Networks,” in 2006 ICS Conference, vol.2, pp.580-585, Jan. 2007.
    [54] Lee,Bih-Hwang and Lai,Hui-Cheng, “An Enhancing EDCAF (E2DCAF) Based on Cross-Layer Information for Multirate Wireless Networks,” Accepted in IET Communications, 2007.
    [55] Heusse.M, Rousseau. F., Berger-Sabbatel. G., Duda A., “Performance anomaly of 802.11b,” in INFCOM 2003, vol.2, pp.836-843, March 2003.
    [56] E. Setton, T.Yoo, X. Zhu, A. Goldsmith and B. Girod, “Cross-layer Design of AdHoc Networks for Real-Time Video Stream,” IEEE Wireless Communications Magazing, vol.12, no.4, pp.59-65, Aug. 2005.
    [57] K. Sundaresan and K.Papagiannaki, “The Need for Cross-Layer Information in Access Point Selection Algorithms,” in ACM Internet Measurement Conference, pp.257-262, Oct. 2006.
    [58] Datasheet for OriNOCO 11b Client PC Card. http://www. proxim. com/

    QR CODE