簡易檢索 / 詳目顯示

研究生: 黃鎮平
Cheng-ping Huang
論文名稱: 負載特性對功率因數計算值的影響
Effects of Loading Characteristics on Power Factor Calculation Values
指導教授: 吳啟瑞
Chi-jui Wu
口試委員: 陳南鳴
Nan-ming Chen
辜志承
Jyh-cherng Gu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 126
中文關鍵詞: 功率因數負載特性特殊接線變壓器小波轉換資料壓縮
外文關鍵詞: power factor, load characteristic, specially connected transformer, wavelet transform, data compression
相關次數: 點閱:188下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文計算同一筆負載資料的六種功率因數值,以探討負載特性對功率因數計算值差異的影響,進而藉由此差異性反映不良電力品質的負載特性。所討論的六種功率因數定義中,三種定義取自IEEE標準1459-2000,另三種定義僅考慮基本波成分。本文首先模擬諧波污染、負載不平衡與負載變動等負載特性對功率因數值的影響,進而以鐵路、捷運、鋼鐵、電機、化工、商業及機關等七種業別各一家代表性的用戶負載實測資料加以說明。另針對電氣化軌道負載常見的三相變二相之V-V接線、Scott接線及Le Blanc接線變壓器,探討其負載特性對於三相電源側功率因數值的影響。最後還探討適於長期監測負載特性的資料壓縮技術,利用小波轉換配合三種編碼方式進行資料壓縮,並比較壓縮資料重建後於電力量計算的正確性,結果顯示正規化嵌入式零樹小波編碼有較佳的資料壓縮效果。若電業採用較能反映負載特性的功率因數定義式及合理的賞罰標準,將能正向促使用戶注意與改善其電力品質問題。


This thesis presents a study on calculation and comparison of six power factor values by using a set of load data. It is intended to investigate the differences and effects of load characteristics on power factor values, and consequently to use this deviations to reflect the load characteristics of the inferior power quality. Within the six power factor value definitions discussed, three employing the IEEE Standard 1459-2000, and the rests are based only on fundamental components. First, the impacts of load characteristics to the power factor values are simulated based on the effects of harmonic distortion, load unbalance, and the load fluctuation. Then, the field measurement results of each representing user from the selected seven fields, such as railway, MRT, electric arc furnace, electrical and electronic plant, chemical plant, business building, and government office are examined. Additionally, the loading characteristics and power factor values of V-V, Scott, and Le Blanc connected transformers are also illustrated. At last, the examination also includes the searching of more sensible data compression techniques for the long-term monitoring of the load characteristics. Adopting the wavelet transform in conjunction with three coding methods to proceed the data compression, and then comparing the accuracy of power quantity calculation by using the reconstructed data. The comparison result reveals that the normalized embedded zero-tree wavelet coding has better performances on data compression. In order to benefit from a better power quality environment, a proper power factor definition and a more reasonable standard need to be used to truly reflect the loading characteristics of the power factor values.

中文摘要……………………………………………………………………. i 英文摘要……………………………………………………………………. ii 誌謝…………………………………………………………………………. iii 目錄…………………………………………………………………………. iv 符號說明……………………………………………………………………. vi 圖表索引……………………………………………………………………. ix 第一章 緒論 1.1 研究動機與目的………………………………………………1 1.2 相關研究………………………………………………………2 1.3 本論文之貢獻…………………………………………………4 1.4 章節概要………………………………………………………5 第二章 電力量與功率因數之定義 2.1 單相系統功率因數…………..…………………………………7 2.2 三相系統功率因數………………………………………………9 2.3 平均功率因數……..…………………..………………………….12 2.4 評估諧波污染及負載不平衡的功率……………………………14 第三章 不良電力品質負載對功率因數的影響 3.1 模擬方法…………………………………………………………16 3.2 諧波及不平衡對功率因數之影響………………………………17 3.3 虛功率變動對功率因數的影響…………………………………20 3.4 結語………………………………………………………………22 第四章 大用電戶功率因數量測與統計 4.1 量測儀器及計算流程……………………………………………23 4.2 量測步驟…………………………………………………………24 4.3 測量結果…………………………………………………………26 4.3.1 鐵路用戶…………………………………………………26 4.3.2 捷運用戶…………………………………………………34 4.3.3 鋼鐵用戶…………………………………………………38 頁次 4.3.4 電機用戶…………………………………………………….42 4.3.5 化工用戶…………………………………………………….46 4.3.6 商業用戶…………………………………………………….53 4.3.7 機關用戶……………………….…………………………..57 4.4 結語………………………………………………………………..…61 第五章 特殊接線變壓器的功率因數探討 5.1 前言………………………………………………………………….62 5.2 特殊接線變壓器的電路分析……………………………………….62 5.2.1 V-V接線………………………………………………………62 5.2.2 Scott接線…………………………………………………..63 5.2.3 Le Blanc接線…………………………………………………64 5.3 模擬方法……………………………………………………………..66 5.4 實測結果與分析……………………………………………………..72 5.5 結語…………………………………………………………………..75 第六章 適於長期監測負載特性的資料壓縮技術 6.1 前言…………………………………………………………………..76 6.2小波轉換與資料壓縮………………………………………………...77 6.3 編碼…………………………………………………………………..83 6.3.1 門檻值編碼………………………….…………………….....84 6.3.2 向量量化編碼………………………………………………...85 6.3.3 正規化嵌入式零樹小波編碼………………………………...89 6.4 給定的電壓變動及諧波電流波形壓縮測試結果…………………..92 6.5 現場實測負載資料壓縮結果…………………..………...………….97 6.6 結語…………………..…………………..…………………..……..113 第七章 結論與未來研究方向 7.1 結論…………………..…………………..…………………..……..114 7.2 未來研究方向…………………..…………………..………………116 參考文獻…………………..…………………..…………………………….117 作者簡介…………………..…………………..…………………………….124

[1] IEEE Trial-Use Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, IEEE Std 1459-2000, New York, (2000).
[2] A. E. Emanuel, “Powers in nonsinusoidal situations - A review of definitions and physical meaning,” IEEE Trans. on Power Delivery, Vol. 5, No. 3, pp. 1377-1389, (1990).
[3] A. E. Emanuel, “On the definition of power factor and apparent power in unbalanced polyphase circuits with sinusoidal voltage and currents,” IEEE Trans. on Power Delivery, Vol. 8, No. 3, pp. 841-852 (1993).
[4] P. S. Filipski, “Polyphase apparent power and power factor under distorted waveform conditions,” IEEE Trans. on Power Delivery, Vol. 6, No. 3, pp. 1161-1165, (1991).
[5] P. S. Filipski, Y. Baghzouz, and M. D. Cox, “Discussion of power definitions contained in the IEEE dictionary,” IEEE Trans on Power Delivery, Vol. 9, No. 3, pp. 1237-1244, (1994).
[6] IEEE Standard Dictionary of Electrical and Electronics Terms, ANSI/IEEE Std 100-1988, (Fourth Edition), The Institute of Electrical and Electronics Engineers, Inc., New York, NY, (1998).
[7] L. S. Czarnecki, “Misinterpretations of some power properties of electric circuits,” IEEE Trans. on Power Delivery, Vol. 9, No. 4, pp. 1760-1769, (1994).
[8] L. S. Czarnecki, “Power related phenomena in three-phase unbalanced systems,” IEEE Trans. on Power Delivery, Vol. 10, No. 3, pp. 1168-1176, (1995).
[9] IEEE Working Group on Nonsinusoidal Situations, “A survey of North American electric utility concerns regarding nonsinusoidal waveforms,” IEEE Trans. on Power Delivery, Vol. 11, No. 1, pp. 73-78, (1996).
[10] A. E. Emanuel, “The Buchholz-Goodhue apparent power definition: the practical approach for nonsinusoidal and unbalance systems,” IEEE Trans. on Power Delivery, Vol. 13, No. 2, pp. 344-350, (1998).
[11] A. E. Emanuel, “Apparent power definitions for three-phase systems,” IEEE Trans. on Power Delivery, Vol. 14, No. 3, pp. 767-772, (1999).
[12] P. S. Filipski, and P. W. Labaj, “Evaluation of reactive power meters in the presence of high harmonic distortion,” IEEE Trans. on Power Delivery, Vol. 7, No. 4, pp. 1793-1799, (1992).
[13] IEEE Working Group on Nonsinusoidal Situations: Effects on Meter performance and Definitions of Power, “Practical definitions for powers in systems with nonsinusoidal waveforms and unbalanced loads: a discussion,” IEEE Trans. on Power Delivery, Vol. 11, No. 1, pp. 79-101, (1996).
[14] T. H. Fu and C. J. Wu, “Load characteristics analysis of ac and dc arc furnaces using various power definitions and statistic method,” IEEE Trans. on Power Delivery, Vol. 17, No. 4, pp. 1099-1105, (2002).
[15] C. J. Wu, C. P. Huang, T. H. Fu, T. C. Zhao, and H. S Kuo, “Power factor definitions and effect on revenue of electric arc furnace load,” International Conference on Power System Technology, IEEE PowerCon 2002, KunMing, China, Vol.1, pp.93-97, (2002)
[16] 吳啟瑞、黃鎮平、林俊男、傅祖勳、彭士開、顏榮良、韓明紘、張洋三,「功率因數定義對電費差異之影響」,94年節約能源論文發表會,第194~212頁,民國94年6月8日
[17] B. K. Chen and B. S. Guo, “Three phase models of specially connected transformers,” IEEE Trans. on Power Delivery, Vol. 11, No. 1, pp.323-330, (1996).
[18] D. V. Richardson, Rotating Electric Machinery and Transformer Technology, Reston Publishing Co. Inc., Virginia, pp.418-423, (1978).
[19] I. L. Kosow, Electric Machinery and Transformer, Prentice-Hall, New York, pp.559-562, (1991).
[20] J. C. Brittain, “Charles F. Scott: A pioneer in electrical power engineering,” IEEE Industry Applications Magazine, Nov./Dec., pp.6-8, (2002).
[21] A. C. Franklin and D. P. Franklin, The J&P Transformer Book, 11th Ed., London, U.K.:Butterworths, pp.166-195, (1983).
[22] T. H. Chen and H. Y. Kuo, “Network modeling of traction substation transformers for studying unbalance effects,” IEE Proc. Generation. Transmission. Distribution, Vol. 142, No. 2, pp.103–108, (1995).
[23] H. Y. Kuo and T. H. Chen, “Rigorous evaluation of the voltage unbalance due to high-speed railway demands,” IEEE Trans. on Vehicular Technology, Vol. 47, No. 4, pp.1385-1389, (1998).
[24] S. R. Huang and B. N. Chen “Harmonic study of le-blanc transformer for taiwan railway electrification system,” IEEE Trans. on Power Delivery, Vol. 14, No. 3, pp.767-772, (1999).
[25] K. C. Lu and N. M. Chen, “The phasor combination differential protection for Le-Blanc transformers,” IEEE Trans. on Power Delivery, Vol. 12, No. 4, pp.1434-1438, (1997).
[26] J. M. Ho and T. L. Tsou, “The effect analysis and simulation test of harmonics on differential protection of Scott transformers,” IEEE Porto Power Tech. Conf., Porto, Portugal, Sep. 10-13, (2001).
[27] 吳啟瑞、黃鎮平、林俊男、顏榮良、張洋三、韓明紘,「軌道負載功率因數定義探討與比較」,93年節約能源論文發表會,第188~206頁,民國93年5月19日
[28] 戴顯權,「資料壓縮」,紳藍出版社,第13-2~13-70頁,民國90年
[29] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation, ” IEEE Trans. on PAMI, Vol. 11, No. 7, pp. 674-693, (1989).
[30] M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, “Image coding using wavelet transform, ” IEEE Trans. on Image Processing, Vol. 1, No. 2, (1992).
[31] C. Christopoulos, A. N. Skodras, and T. Ebrahimi, “The JPEG2000 still image coding system: An overview,” IEEE Trans. on Consumer Electronics, Vol. 46, No. 4, pp. 1103-1127, (2000).
[32] B. E. Usevitch, “A tutorial on modern lossy wavelet image compression: foundations of JPEG2000”, IEEE Signal Processing Magazine, pp.22-35, Sep., (2001).
[33] B. A. Rajoub, “An efficient coding algorithm for the compression of ECG signals using the wavelet transform,” IEEE Trans. on Biomedical Engineering, Vol. 49, No. 4, pp. 355-362, (2002).
[34] A. Al-Rawi and M. Devaney, “Wavelets and power system transient analysis,” IEEE Instrumentation and Measurement Technology Conference, IMTC/98, St. Paul, Minnesota, Vol 2, pp.1331-1334, 18-21 May, (1998).
[35] A. W. Galli and O. M. Nielsen, “Wavelet analysis for power system transients” IEEE Computer Applications in Power, Vol. 12, No. 1, pp.16, 18, 20, 22, 24-25, (1999).
[36] C. H. Lee, Y. J. Wang, and W. L. Huang, “A literature survey of wavelets in power engineering applications,” Proceeding of the National Science Council, Vol. 24, No. 4, pp.249-258, (2000).
[37] E. Y. Hamid and Z. I. Kawasaki, “Wavelet packet transform for rms values and power measurements,” IEEE Power Engineering Review, Vol. 21, No. 9, pp.49-51, Sep., (2001).
[38] O. Poisson, P. Rioual, and M. Meunier, “New signal processing tools applied to power-quality analysis,” IEEE Trans. on Power Delivery, Vol. 14, No. 2, pp.561-566, (1999).
[39] S. Santoso, W. M. Grady, E. J. Powers, J. Lamoree, and S. C. Bhatt, “Characterization of distribution power quality events with Fourier and wavelet transforms,” IEEE Trans. on Power Delivery, vol. 15, no. 1, pp. 247-254, (2000).
[40] A. M. Gaouda, M. M. A. Salama, M. R. Sultan, and A. Y. Chikhani, “Power-quality detection and classification using wavelet-multiresolution signal decomposition,” IEEE Trans. on Power Delivery, Vol. 14, No. 4, pp. 1469-1476, (1999).
[41] S. J. Huang and C. T. Hsieh, “Application of continuous wavelet transform for study of voltage flicker-generated signals,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 36, No. 3, pp. 925-932, (2000).
[42] S. J. Huang and C. T. Hsieh, “Coiflet wavelet transform applied to inspect power system disturbance-generated signals,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 38, No. 1, pp. 204-210, (2002).
[43] C. W. Lu and S. J. Huang; “An application of B-Spline wavelet transform for notch detection enhancement,” IEEE Trans. on Power Delivery, Vol. 19, No. 3, pp.1419-1425, (2004).
[44] S. Santoso, E. J. Powers, and W. M. Grady, “Power-quality disturbance data compression using wavelet transform methods, ” IEEE Trans. on Power Delivery, Vol. l2, No.3, pp.1250-1257, (1997).
[45] T. B. Littler and D. J. Morrow, “Wavelets for the analysis compression of power system disturbances,” IEEE Trans. on Power Delivery, Vo1. 14, No. 2, pp. 358-364, (1999).
[46] 傅祖勳,「電力品質資料分析與壓縮」,國立台灣科技大學電機工程系,博士論文,民國91年7月
[47] S. J. Huang and M. J. Jou, “ Application of arithmetic coding for electric power disturbance data compression with wavelet packet enhancement,” IEEE Trans. on Power Systems, Vol. 19, No. 3, pp.1334-1341, (2004).
[48] F. Gao, X. K. Li, and W. G. Wee, “A new wavelet based deblocking algorithm for compressed images,” The 36th Asilomar Conference on Signals, Systems and Computers, Vol. 2, pp.1745-1748, 3-6 Nov. (2002).
[49] G. Voulgaris and J. Jiang, “Quadtree Based Image Indexing in Wavelets Compressed Domain,” The 20th Eurographics UK Conference, pp.89-93, 11-13 June, (2002).
[50] W. Wen, Z. Y. Xiao, and S. L. Peng, “Bayesian postprocessing algorithm for DWT-based compressed image,” 2004 International Conference on Image Processing, ICIP '04., Vol. 3, pp.1811-1814, 24-27 Oct. (2004).
[51] T. M. Shapiro, ”Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. on Signal Processing, Vol. 41, No.12, pp.3445-3462, (1993).
[52] S. A. Martucci, I. Sodagar, T. Chiang, and Ya-Qin Zhang, “A zerotree wavelet video coder,” IEEE Trans. on Circuits and Systems for Video Technology, Vol. 7, No. 1, pp.109-118, (1997).
[53] V. N. Ramaswamy, K. R. Namuduri, and N. Ranganathan, “Context-based lossless image coding using EZW framework,” IEEE Trans. on Circuits and Systems for Video Technology, Vol. 11, No. 4, pp.554-559, (2001).
[54] A. Said and W. A. Pearlman,”A new, fast, and efficient image codec based on set partitioning in hierachical trees,” IEEE Trans. on Circuit Systems for Video Technology,Vol. 6, No. 3, pp.243-250, (1996).
[55] 歐崇明,「MATLAB使用入門」,高立圖書,民國87年5月
[56] 鄭錦聰、莊鎮嘉,「MATLAB進階(含Simulink)」,全華圖書,民國86年3月
[57] 歐華科技,「ADX3000電力品質分析儀使用手冊」,民國90年
[58] 單維章,「凌波初步」,全華圖書,民國89年3月
[59] K. Sayood, Introduction to Data Compression, 2nd Ed., Academic Press, (2000)
[60] The Math Works Inc., Wavelet Toolbox User’s Guide with MATLAB, (1996)
[61] Y. Linde, A. Buzo, and R. Gray, ”An algorithm for vector quantizer design,” IEEE Trans. on Communications, Vol. 28, Issue 1, pp.84-95, (1980)

QR CODE