簡易檢索 / 詳目顯示

研究生: 劉柏良
Bo-Liang Liu
論文名稱: 連續式熱裂解反應系統應用於處理酯化製程後段物料之研究
Study on Treatment of Residues of Esterification Process via Continuous Pyrolysis System
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 曾堯宣
Yao-Hsuan Tseng
顧洋
Young Ku
陳士勛
Shih-Hsun Chen
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 105
中文關鍵詞: 固體廢棄物酯化製程熱裂解旋窯反應器
外文關鍵詞: solid waste, esterification process, pyrolysis, rotary kiln reactor
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著台灣工業迅速發展,而在工業生產過程中,連帶產生許多工業固體廢棄物,目前大多採用焚化或掩埋方式處理,其會產生大量汙染及碳排放。本研究著墨於固體廢棄物之連續式熱裂解反應系統,以減少汙染產生量和廢棄物清運費用,並以實場酯化製程後段物料做為研究標的,將此有機無機複合物轉化為可應用之無機鹽與燃氣。
本研究以酯化製程後段的丙烯酸廢液及萃取後濃縮固體廢棄物作為原料,先於批次反應器內,在高溫及缺氧的環境下進行裂解反應。觀察裂解後產物之物理現象與尾氣組成,進一步改變反應溫度、反應時間、載氣種類及載氣流量以進行優化,數據顯示反應溫度及反應時間為重要參數,影響裂解固體產物的物理性質、有機成分去除效果及尾氣組成,找出避免無機鹽類熔融但有機物質可完全裂解的反應參數,以應用於連續式反應器。
第二部分使用旋窯反應器做為連續式反應器,其測試結果顯示,當前、中、後段反應溫度為500C、550C、600C、固廢B進料速率為50 g/min及載氣流量為10 L/min為目前最適合的操作參數。在此條件下,固廢B的重量損失可達40%,且在旋窯管壁上無明顯物料殘留,顯示此系統能達到長時間運行。後續評估經濟效益、能源回收及產物再利用,作為實場設計規劃之參考依據。


With the rapid development of Taiwan's industry, lots of industrial solid waste were produced with the industrial process. Nowadays, most of solid wastes were treated by incineration or landfill methods, resulting in generation of pollutants and emission of carbon dioxide. This study focused on the continuous pyrolysis system for solid waste to reduce the yield of pollutants and the cost of waste treatment. The target material was the waste of esterification process, inorganic/organic composite which was converted to applicable inorganic salts and flue gas.
In this study, the acrylic acid liquid waste and the concentrated solid waste from extraction step were used as feed. The pyrolysis reaction was first taken place in the batch reactor under the high temperature and oxygen-deficient condition. The change in physical phenomenon of the pyrolytic product and composition of outlet gas during the pyrolysis reaction were observed. The parameters, reaction temperature, reaction time, composition of carrier gas, and gas flow rate, were systematically adjusted to obtain optimal conditions, where reaction temperature and reaction time were most important factors, which affect the physical properties of solid product, removal efficient of organic matter, and composition of outlet gas. Finally, the proper parameters that prevented the melt of inorganic salt while completely pyrolyzed the organic substances, then applied in the continuous system.
In the second part, the rotary kiln reactor was used as the continuous reactor. The experimental results showed that 500C, 550C and 600C of the front, middle, and back stages, 50 g/min of solid waste B, and 10 L/min of the carrier gas were the most workable parameters. Under these parameters, the weight loss of solid waste B could reach 40% without obvious residue of material in the reactor. Therefore, the pyrolysis of solid waste B in this system could be carried out continuously. The economic benefits, energy recovery, and utilization of product were evaluated as references for the field design.

摘要 I ABSTRACT II 致謝 III 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 熱化學轉化技術 4 2.1.1 燃燒 4 2.1.2 氣化 4 2.1.3 熱裂解 5 2.1.4 熱化學轉化技術比較 6 2.2 熱裂解技術簡介 7 2.3 熱裂解分類 9 2.3.1 慢速裂解 10 2.3.2 快速裂解 10 2.3.3 閃速裂解 11 2.4 熱裂解機制 12 2.4.1 生物質熱裂解機制 12 2.4.2 聚丙烯酸酯裂解 13 2.4.3 碳黑及焦油生成機制 15 2.5 熱裂解反應器 18 2.5.1 固定床反應器 18 2.5.2 流體化床反應器 19 2.5.3 燒蝕反應器 21 2.5.4 旋轉錐反應器 22 2.5.5 真空熱裂解反應器 23 2.5.6 電漿反應器 24 2.5.7 微波反應器 25 2.5.8 螺旋反應器 26 2.5.9 迴轉窯反應器 27 2.5.10 熱裂解反應器比較 28 2.6 熱裂解產物分離 30 2.6.1 焦油的分離 30 2.6.2 粒狀汙染物捕集原理 31 2.6.3 粒狀汙染物控制設備 32 2.6.4 酸鹼氣體控制設備 36 第三章 研究方法 38 3.1 實驗規劃 38 3.2 實驗藥品 40 3.3 實驗設備與分析儀器 40 3.3.1 實驗設備 40 3.3.2 分析儀器 41 3.4 熱裂解系統 43 3.4.1 批次熱裂解反應器 43 3.4.2 連續式熱裂解反應器 46 第四章 結果與討論 49 4.1 材料熱裂解可行性評估 49 4.2 批次裂解萃取後濃縮固體廢棄物 52 4.2.1 裂解溫度對產物之影響 52 4.2.2 反應時間對產物之影響 60 4.2.3 水氣對產物之影響 62 4.2.4 載氣流量對於產物之影響 63 4.3 批次裂解丙烯酸廢液 64 4.3.1 裂解溫度對產物之影響 64 4.3.2 裂解時間對產物之影響 67 4.4 連續式熱裂解系統 70 4.4.1 連續式反應器設計 70 4.4.2 操作結果及進出料現象 73 4.4.3 操作成本評估 81 第五章 結論與未來展望 83 5.1 結論 83 5.2 未來展望 85 第六章 參考文獻 88

[1] 行政院環境保護署事業廢棄物申報及管理資訊系統." 109年事業廢棄物申報量統計報告"
[2] M. Hupa, O. Karlström, and E. Vainio, "Biomass combustion technology development–It is all about chemical details," Proceedings of the Combustion Institute, vol. 36, no. 1, pp. 113-134, 2017.
[3] T. Nussbaumer, "Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction," Energy & Fuels, vol. 17, no. 6, pp. 1510-1521, 2003.
[4] P. McKendry, "Energy production from biomass (part 1): overview of biomass," Bioresource Technology, vol. 83, no. 1, pp. 37-46, 2002.
[5] 崑鼎電子報. "氣化技術當紅,傳統焚化退場?廢棄物處理設施利弊分析."
https://www.ecove.com/e-newsletter/?l=CH&no=001&cat=key-technology&article=01.
[6] P. Basu, "Biomass gasification, pyrolysis and torrefaction: practical design and theory," Academic press, 2018.
[7] 台灣電力公司. "火力發電歷年占比."
[8] A. A. Zabaniotou and G. Stavropoulos, "Pyrolysis of used automobile tires and residual char utilization," Journal of Analytical and Applied Pyrolysis, vol. 70, no. 2, pp. 711-722, 2003.
[9] S. Zhao and Y. Luo, "Multiscale modeling of lignocellulosic biomass thermochemical conversion technology: an overview on the state-of-the-art," Energy & Fuels, vol. 34, no. 10, pp. 11867-11886, 2020.
[10] D. Mohan, C. U. Pittman Jr, and P. H. Steele, "Pyrolysis of wood/biomass for bio-oil: a critical review," Energy & Fuels, vol. 20, no. 3, pp. 848-889, 2006.
[11] M. J. Antal and M. Grønli, "The art, science, and technology of charcoal production," Industrial & Engineering Chemistry Research, vol. 42, no. 8, pp. 1619-1640, 2003.
[12] T.-H. Tsui and J. W. Wong, "A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management," Waste Disposal & Sustainable Energy, vol. 1, no. 3, pp. 151-167, 2019.
[13] L. Yi, H. Liu, S. Li, M. Li, G. Wang, G. Man, and H. Yao, "Catalytic pyrolysis of biomass wastes over Org-CaO/Nano-ZSM-5 to produce aromatics: Influence of catalyst properties," Bioresource Technology, vol. 294, p. 122186, 2019.
[14] W. Cai, N. Kang, M. K. Jang, C. Sun, R. Liu, and Z. Luo, "Long term storage stability of bio-oil from rice husk fast pyrolysis," Energy, vol. 186, p. 115882, 2019.
[15] M. Violette, "Memoire sur les Charbons de Bois," Ann. Chim. Phys, vol. 32, p. 304, 1853.
[16] L. Wang, M. Trninic, Ø. Skreiberg, M. Gronli, R. Considine, and M. J. Antal Jr, "Is elevated pressure required to achieve a high fixed-carbon yield of charcoal from biomass? Part 1: Round-robin results for three different corncob materials," Energy & Fuels, vol. 25, no. 7, pp. 3251-3265, 2011.
[17] E. Keappler, "Apparatus for pyrolysis of wastes," ed: Google Patents, 1974.
[18] O. Onay and O. M. Kockar, "Slow, fast and flash pyrolysis of rapeseed," Renewable Energy, vol. 28, no. 15, pp. 2417-2433, 2003.
[19] F.-X. Collard and J. Blin, "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, vol. 38, pp. 594-608, 2014.
[20] S. Y. Foong, R. K. Liew, Y. Yang, Y. W. Cheng, P. N. Y. Yek, W. A. W. Mahari, "Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions," Chemical Engineering Journal, vol. 389, p. 124401, 2020.
[21] J. Shen, X.S. Wang, M. Garcia-Perez, D. Mourant, M. J. Rhodes, and C.Z. Li, "Effects of particle size on the fast pyrolysis of oil mallee woody biomass," Fuel, vol. 88, no. 10, pp. 1810-1817, 2009.
[22] D. Neves, H. Thunman, A. Matos, L. Tarelho, and A. Gómez-Barea, "Characterization and prediction of biomass pyrolysis products," Progress in Energy and Combustion Science, vol. 37, no. 5, pp. 611-630, 2011.
[23] Y. Lee, C. Ryu, Y.-K. Park, J.-H. Jung, and S. Hyun, "Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1," Bioresource Technology, vol. 130, pp. 345-350, 2013.
[24] A. V. Bridgwater, D. Meier, and D. Radlein, "An overview of fast pyrolysis of biomass," Organic Geochemistry, vol. 30, no. 12, pp. 1479-1493, 1999.
[25] C. Xu and T. Etcheverry, "Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts," Fuel, vol. 87, no. 3, pp. 335-345, 2008.
[26] S. Czernik and A. Bridgwater, "Overview of applications of biomass fast pyrolysis oil," Energy & Fuels, vol. 18, no. 2, pp. 590-598, 2004.
[27] Q. Bu, H. Lei, A. H. Zacher, L. Wang, S. Ren, J. Liang, Y. Wei, Y. Liu, J. Tang, Q. Zhang, and R. Ruan, "A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis," Bioresource Technology, vol. 124, pp. 470-477, 2012.
[28] R. J. Evans and T. A. Milne, "Molecular chara cterization of the pyrolysis of biomass," Energy & Fuels, vol. 1, no. 2, pp. 123-137, 1987.
[29] N. Canabarro, J. F. Soares, C. G. Anchieta, C. S. Kelling, and M. A. Mazutti, "Thermochemical processes for biofuels production from biomass," Sustainable Chemical Processes, vol. 1, no. 1, pp. 1-10, 2013.
[30] D. Neves, H. Thunman, A. Matos, L. Tarelho, and A. Gómez-Barea, "Characterization and prediction of biomass pyrolysis products," Progress in Energy and Combustion Science, vol. 37, no. 5, pp. 611-630, 2011.
[31] Z. Czech and R. Pełech, "The thermal degradation of acrylic pressure-sensitive adhesives based on butyl acrylate and acrylic acid," Progress in Organic Coatings, vol. 65, no. 1, pp. 84-87, 2009.
[32] D. S. Achilias, "Chemical recycling of polymers. The case of poly (methyl methacrylate)," in Proceedings of the International Conference on Energy & Environmental Systems, Chalkida, Greece, 2006, pp. 8-10.
[33] W. Kaminsky, M. Predel, and A. Sadiki, "Feedstock recycling of polymers by pyrolysis in a fluidized bed," Polymer Degradation and Stability, vol. 85, no. 3, pp. 1045-1050, 2004.
[34] W.J. Chou, G.A. Wang, C.C. Wang, C.Y. Chen, J.L. Lin, and S.J. Huang, "Thermal degradation kinetics and mechanisms of PMEPP and MEPP/MMA copolymer," Polymer, vol. 50, no. 21, pp. 5094-5102, 2009.
[35] W. Kaminsky and J. Franck, "Monomer recovery by pyrolysis of poly (methyl methacrylate)(PMMA)," Journal of Analytical and Applied Pyrolysis, vol. 19, pp. 311-318, 1991.
[36] C. O. Okoye, I. Jones, M. Zhu, Z. Zhang, and D. Zhang, "Manufacturing of carbon black from spent tyre pyrolysis oil – A literature review," Journal of Cleaner Production, vol. 279, p. 123336, 2021.
[37] N. E. Sánchez, A. Callejas, A. Millera, R. Bilbao, and M. U. Alzueta, "Formation of PAH and soot during acetylene pyrolysis at different gas residence times and reaction temperatures," Energy, vol. 43, no. 1, pp. 30-36, 2012.
[38] K. C. Oh, C. B. Lee, and E. J. Lee, "Characteristics of soot particles formed by diesel pyrolysis," Journal of Analytical and Applied Pyrolysis, vol. 92, no. 2, pp. 456-462, 2011.
[39] 骆仲泱, 张晓东, 周劲松, 倪明江, and 岑可法, "生物质热解焦油的热裂解与催化裂解," 高校化学工程学报, vol. 18, no. 2, pp. 162-167, 2004.
[40] S. Jiang, L. Shen, J. Wu, J. Yan, and T. Song, "The investigations of hematite-CuO oxygen carrier in chemical looping combustion," Chemical Engineering Journal, vol. 317, pp. 132-142, 2017.
[41] Q. K. Tran, M. L. Le, H. V. Ly, H. C. Woo, J. Kim, and S.-S. Kim, "Fast pyrolysis of pitch pine biomass in a bubbling fluidized-bed reactor for bio-oil production," Journal of Industrial and Engineering Chemistry, vol. 98, pp. 168-179, 2021.
[42] P. Basu and S. A. Fraser, "Circulating fluidized bed boilers," Springer, 1991.
[43] G. Peacocke and A. Bridgwater, "Ablative plate pyrolysis of biomass for liquids," Biomass and Bioenergy, vol. 7, no. 1-6, pp. 147-154, 1994.
[44] A. V. Bridgwater and G. V. C. Peacocke, "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, vol. 4, no. 1, pp. 1-73, 2000.
[45] H. Pakdel, D. M. Pantea, and C. Roy, "Production of dl-limonene by vacuum pyrolysis of used tires," Journal of Analytical and Applied Pyrolysis, vol. 57, no. 1, pp. 91-107, 2001.
[46] S. Nema and K. Ganeshprasad, "Plasma pyrolysis of medical waste," Current Science, pp. 271-278, 2002.
[47] S. Choi, S. H. Hong, H. S. Lee, and T. Watanabe, "A comparative study of air and nitrogen thermal plasmas for PFCs decomposition," Chemical Engineering Journal, vol. 185, pp. 193-200, 2012.
[48] B. Yan, P. Xu, C. Y. Guo, Y. Jin, and Y. Cheng, "Experimental study on coal pyrolysis to acetylene in thermal plasma reactors," Chemical Engineering Journal, vol. 207-208, pp. 109-116, 2012.
[49] A. A. Salema and F. N. Ani, "Microwave induced pyrolysis of oil palm biomass," Bioresource Technology, vol. 102, no. 3, pp. 3388-3395, 2011.
[50] F. Campuzano, R. C. Brown, and J. D. Martínez, "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, vol. 102, pp. 372-409, 2019.
[51] E. Yazdani, S. H. Hashemabadi, and A. Taghizadeh, "Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature," Waste Management, vol. 85, pp. 195-201, 2019.
[52] 陳維新、江金龍, "空氣汙染與控制," 2008.
[53] X. Liu, Y. Zhang, Q. Wu, M. Zhang, F. Liu, and Y. Guo, "Study on the key structure parameters of a gravity settling chamber based on a flow field simulation," Engineering Applications of Computational Fluid Mechanics, vol. 13, no. 1, pp. 377-395, 2019.
[54] G. C. E. Systems. "Wet Scrubber."

[55] M. Rodrigues, F. Arouca, M. Barrozo, and J. Damasceno, "Analysis of the efficiency of a cloth cyclone: the effect of the permeability of the filtering medium," Brazilian Journal of Chemical Engineering, vol. 20, no. 4, pp. 435-443, 2003.
[56] N. D. Hutson, R. Krzyzynska, and R. K. Srivastava, "Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber," Industrial & Engineering Chemistry Research, vol. 47, no. 16, pp. 5825-5831, 2008.
[57] Inc., Compositech Products Manufacturing. Compositech Filters Manufacturer.
[58] L. Wei, X.H. Fan, M. Gan, Z.Y. Ji, X. Chen, J.W. Yao, &T. Jiang, "Investigation on activated carbon removing ultrafine particles and its harmful components in complex industrial waste gas," Journal of Cleaner Production, vol. 201, pp. 382-390, 2018.
[59] 杭州阿諾瓦機電設備有限公司,"活性碳吸附塔工作原理."
http://www.anovoo.com/Products/hxtxftgzyl.html

無法下載圖示 全文公開日期 2032/08/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE