簡易檢索 / 詳目顯示

研究生: 葉庭杰
TING-CHIEH YEH
論文名稱: 車輛環境中針對D2D通訊基於位置預測之資源分配
Location-Prediction-based Resource Allocation for D2D Communications in Vehicle Environments
指導教授: 賴源正
Yuan-Cheng Lai
口試委員: 羅乃維
Nai-Wei Lo
徐俊傑
Chiun-Chieh Hsu
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理系
Department of Information Management
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 36
中文關鍵詞: D2D基於地理位置資訊的資源分配時間控制V2V
外文關鍵詞: Device-to-Device, Location-based resource allocation, Time control, Vehicle-to-Vehicle
相關次數: 點閱:210下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

D2D通訊被定義為兩個使用者設備(User Equipment, UE)能直接進行傳輸而不需經過基地台。於Underlay Inband D2D的討論範疇中,蜂窩用戶(CUE)與D2D用戶(DUE)之間造成的干擾問題被視為一重大議題。目前已有許多基於地理位置資訊的資源分配方法,試圖解決干擾問題。然而,這些論文中所考量的環境皆為「靜止」的狀態,並未考量「動態且變化快」的環境,因此當UE處於快速移動的車輛中時,會造成資源分配不佳,導致頻譜效率降低。
本論文提出一套基於預測干擾及時間控制(Time Control with Prediction, TCP)的方法來解決上述問題。TCP包含三個機制:蒐集機制、位置預測機制、時間控制機制。蒐集機制引入了位置預測技術來有效減少蒐集位置資訊的次數;位置預測機制利用預測位置來改善基於地理位置的資源分配方法;時間控制機制設定D2D通訊的連線時間,藉此避免CUE在保證時間內穿越過DUE的行進路線。由實驗結果可得知,TCP方法相較於之前的研究DRC(Distance-constrained Resource-sharing Criterion)方法,可提升10%到45%的頻譜效率。


D2D communication is defined as direct communication between two user equipments (UE) without traversing base station (BS). Interference problem between the cellular user equipment (CUE) and D2D user equipment (DUE) is the most important issue in underlay inband D2D communication. Many resource allocation schemes based on location information were proposed to solve the interference problem, but they only focused on the static scenarios. Thus, they are not suitable to the dynamic and fast change scenarios, causing that the low performance of spectrum efficiency when UE is in a fast-moving vehicle.
This thesis proposes the time control with prediction (TCP) scheme to solve the aforementioned problem. The TCP scheme consists of three primary mechanisms: collection mechanism, location prediction mechanism, and time control mechanism. The collection mechanism introduces the prediction technology which can effectively reduce the number of location collecting. The location prediction mechanism utilizes the predicted locations to improve the location-based resource allocation. The time control mechanism sets up the duration of D2D communication to avoid that the selected CUE passes through the route of the DUE before the guaranteed time. The simulation result shows the TCP scheme can achieve the better spectrum efficiency up to 10% to 45%, compared to the DRC scheme.

摘要 I Abstract II Acknowledgment III Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 D2D Communication 3 2.1.1 Underlaying Inband D2D 4 2.1.2 Location-based Resource Allocation Underlaying Inband D2D 5 2.1.3 Summary of Existing Work 6 2.2 Location Prediction 7 2.3 System Communication Model 8 2.3.1 Interference Scenarios 8 2.3.2 SINR Calculation 9 2.3.3 Path Loss Calculation 9 2.3.4 Transmission Power Calculation 10 Chapter 3 Time Control with Prediction (TCP) 11 3.1 Interference Scenarios 11 3.2 Problem Statement 11 3.3 Proposed Scheme 12 3.4 Guaranteed Communication Time Formulation 13 3.5 Pseudo Code of TCP 14 Chapter 4 Simulations 17 4.1 Scenarios and Parameters 17 4.2 Result 19 4.2.1 Vehicle speed 20 4.2.2 Number of CUEs 21 4.2.3 Number of DUEs 23 4.2.4 Maximum time of time control mechanism 25 Chapter 5 Conclusions 27 References 28

[1] L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Enabling device-to-device communications underlaying cellular networks: challenges and research aspects,” IEEE Communications Magazine, vol. 52, no. 6, pp. 90-96, June 2014.
[2] K. Doppler, M. Rinne, C. Wijting, C. Ribeio, and K. Hugl, “Device-to-device communication as an underlay to LTE-advanced networks,” IEEE Communications Magazine, vol. 47, no. 12, pp. 42-49, Dec. 2009.
[3] P. Bao and G. Yu, “An interference management strategy for device-to-device underlaying cellular networks with partial location information,” Proc. Personal Indoor and Mobile Radio Communications (PIMRC), pp. 465-470, 9-12 Sept., 2012.
[4] H. Wang and X. Chu, “Distance-constrained resource-sharing criteria for device-to-device communications underlaying cellular networks,” Electronics letters, vol. 48.9, pp. 528-530, 2012.
[5] N. P. Kuruvatti, A. Klein, J. Lianghai, Z. Chan, O. Bulakci, J. Eichinger, R. Sattiraju, and H. D. Schotten, “Robustness of Location Based D2D Resource Allocation against Positioning Errors,” Proc. Vehicular Technology Conference (VTC Spring), pp.1 - 6, 2015.
[6] R. Sattiraju, A. Klein, L. Ji, C. Zhou, O. Bulakci, J. Eichinger, N. P. Kuruvatti, and H. D. Schotten, “Virtual Cell Sectoring for Enhancing Resource Allocation and Reuse in Network Controlled D2D Communication, ” Proc. IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1 - 6, 2015.
[7] Rodziewicz and Marcin, “Location-based mode selection and resource allocation in cellular networks with D2D underlay,” Proc. 21th European Wireless Conference, pp.1 - 6, 2015.
[8] T. Koskela, S. Hakola, T. Chen, and J. Lehtomaki, “Clustering concept using Device-to-Device communication in cellular system,” Proc. IEEE Wireless Communications and Networking Conference, pp. 1-6, Apr. 2010.
[9] P. Janis, C. H. Yu, K. Doppler, C. Ribeiro, C. Wijting, K. Hugl, O. Tirkkonen, and V. Koivuen, “Device-to-device communication underlaying cellular communications systems,” International Journal of Communications, Network and System Sciences, vol. 2, no. 3, pp. 169-178, June 2009.
[10] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” accepted by IEEE Communications Surveys and Tutorials, 2014.
[11] “Wi-Fi Peer-to-Peer (P2P) Specification v1. 1,” Wi-Fi Alliance, vol. 1, pp. 1 - 159, 2010.
[12] “Zigbee specification,” ZigBee Alliance, 2006.
[13] “Bluetooth Specification Version 1.1,” 2001.
[14] S. Xu, H. Wang, T. Chen, Q. Huang, and T. Peng, “Effective interference cancellation scheme for device-to-device communication underlaying cellular networks,” Proc. IEEE VTC-Fall, pp. 1-5, 2010.
[15] P. Janis, V. Koivunen, C. Ribeiro, J. Korhonen, K. Doppler, and K. Hugl, “Interference-aware resource allocation for device-to-device radio underlaying cellular networks,” Proc. IEEE VTC-Spring, pp. 1-5, 2009.
[16] H. Min, J. Lee, S. Park, and D. Hong, “Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks,” IEEE Trans. Wireless Commun., vol. 10, no. 12, pp. 3995-4000, Dec., 2011.
[17] X. Chen, L. Chen, M. Zeng, X. Zhang, and D. Yang, “Downlink resource allocation for device-to-device communication underlaying cellular networks,” Proc. IEEE PIMRC, pp. 232-237, 2012.
[18] T. Melodia, D. Pompili, and I. Akyldiz, “Handling Mobility in Wireless Sensor and Actor Networks,” IEEE Trans. Mobile Computing, 2009.
[19] S. Chakraborty, Y. Dong, D. Yau, and J. Lui, “On the effectiveness of movement prediction to reduce energy consumption in wireless communication,” IEEE Trans. Mobile Computing, pp. 157- 169, 2006.
[20] T. Liu, P. Bahl, and I. Chlamtac, “Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks,” IEEE journal on selected areas in communications, vol. 16, no. 6, pp. 922-936, 1998.
[21] S. Fang and T. Lin, “A dynamic system approach for radio location fingerprinting in wireless local area networks,” IEEE Trans. Communications, vol. 58, no. 4, pp. 1020-1025, 2010.
[22] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, “Using mobile phones to determine transportation modes,” ACM Transactions on Sensor Networks (TOSN), vol. 6, no. 2, pp. 1-27, 2010.
[23] V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piche, “A comparative survey of WLAN location fingerprinting methods,” in 6th Workshop on Positioning, Navigation and Communication WPNC, 2009.
[24] Y.-C. Lai, J.-W. Lin, Y.-H. Yeh, C.-N. Lai, and H.-C. Weng, “A tracking system using location prediction and dynamic threshold for minimizing SMS delivery,” Communication and Networks, vol.15, no.1, pp. 54-60, 2013.
[25] L. Song, D. Kotz, R. Jain, and X. He, “Evaluating location predictors with extensive Wi-Fi mobility data,” Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1414-1424, 2004.
[26] S. Scellato, M. Musolesi, and C. Mascolo, “Nextplace: a spatio-temporal prediction framework for pervasive systems,” Pervasive Computing, pp. 152-169, 2011.
[27] M. Arvind Singh and A. N. Miguel A, “A novel approach for protein subcellular location prediction using amino acid exposure,” BMC bioinformatics, vol. 14, no. 1, 2013.
[28] S. Akoush and A. Sameh, “The use of bayesian learning of neural networks for mobile user position prediction,” Proc. Intelligent Systems Design and Applications, pp. 441-446, 2007.
[29] Y. Gong, Y. Li, D. Jin, L. Su, and L. Zeng, “A Location Prediction Scheme Based on Social Correlation,” Proc. Vehicular Technology Conference (VTC Spring), pp. 1-5, 2011.
[30] “Calculate distance, bearing and more between Latitude/Longitude points,” [Online]. Available: http://www.movable-type.co.uk/scripts/latlong.html
[31] “Simulation guidelines,” METIS D6.1, 2013. [Online]. Available: https://
www.metis2020.com/wpcontent/uploads/deliverables/METIS_D6.1_v1.pdf

無法下載圖示 全文公開日期 2021/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE