簡易檢索 / 詳目顯示

研究生: 賴瑞琅
Ruei-Lung Lai
論文名稱: IEEE 802.15.4 無線感測網路下額外載波偵測演算法之研究
Study on Additional Carrier Sensing Algorithm for IEEE 802.15.4 Wireless Sensor Networks
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 陳添智
none
黃依賢
none
陳明輝
none
吳傳嘉
none
陳俊良
none
賴源正
none
鄭瑞光
none
馮輝文
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 65
中文關鍵詞: 無線感測網路載波偵測多重存取/碰撞避免媒介存取控制
外文關鍵詞: carrier sense multiple access with collision avo, medium access control (MAC).
相關次數: 點閱:209下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

無線感測網路(wireless sensor networks; WSNs) 基於 IEEE 802.15.4標準是能夠實現低功耗低傳輸率和短距離無線個人區域網路 (wireless personal networks; WPAN),是由大量的感測節點(sensor nodes)所組成的網路。感測節點的體積通常很小,且有能量來源上的限制,為了適用於不同的領域需求,大部分的感測節點以配備電池做為主要的能量來源。因此,在無線感測網路中,能量消耗的分析是一個重要的效能測量議題。
在IEEE 802.15.4中,主要是使用超碼框架構(superframe structure)來做為控制資料的傳輸並取得感測節點間的同步。在此架構中競爭存取週期(contention access period; CAP)使用時槽化的載波偵測多重存取/碰撞避免(carrier sense multiple access with collision avoidance; CSMA/CA)競爭機制,其隨機後退時間及資料間的碰撞將顯著的影響通道的使用率。
依據CSMA/CA機制,當感測器節點通道淨空評估 (clear channel assessment; CCA)的通道檢測結果是忙碌時便立即執行隨機倒退(random backoff)程序。它可能忽略了通道淨空評估失敗所隱含的資訊,將會使能量消耗提高,並進一步導致多餘的感覺。在時槽化CSMA/CA中,盲目的隨機倒退程序將導致較低的通道利用率。因此,研究通道淨空評估失敗所隱含的資訊並利用,將有助於提升能量效率。
本文提出了一種基於IEEE 802.15.4的額外載波偵測(additional carrier sensing; ACS)演算法用來提高原始時槽化CSMA/CA的載波偵測機制。我們使用一個分析馬可夫鏈(Markov chain)的模型,來評估ACS演算法的表現。不管分析和模擬結果都顯示本文所提出的演算法的效能優於IEEE 802.15.4標準,提高了產能、平均媒介存取控制 (medium access control; MAC) 延遲和檢測CCA時因所需次數減少而降低能量消耗。


Wireless sensor networks (WSNs) based on the IEEE 802.15.4 standard is able to achieve low-power transmissions in low-rate and short-distance wireless personal area network (WPAN). It is comprised of a large number of sensor nodes. Sensor nodes are normally small in size and have restricted power sources. In order to match the applications of different fields, most sensor nodes are equipped with batteries for the roles of main energy source. Thus, the power consumption is an important performance measure issue in WSNs.
In IEEE 802.15.4, the superframe structure is used to control packet transmission and attain synchronization of sensor nodes. In the contention access period (CAP), the slotted carrier sense multiple access with collision avoidance (CSMA/CA) is used for contention mechanism. The channel utilization is significantly affected by idle backoff time and collision due to the use of the CSMA/CA algorithm.
According to the CSMA/CA mechanism, sensor nodes perform backoff process immediately when the clear channel assessment (CCA) detecting busy channel. It may neglect the implicit information of the failed CCA detection and increase the power consumption because of the redundant senses. The blind backoff process in the slotted CSMA/CA will cause lower channel utilization. Therefore, studying the implicit information of CCA failure and using it will reduce the power consumption.
This thesis proposes an additional carrier sensing (ACS) algorithm based on IEEE 802.15.4 to enhance the carrier sensing mechanism for the original slotted CSMA/CA. An analytical Markov chain model is developed to evaluate the performance of the ACS algorithm. Both analytical and simulation results show that the proposed algorithm performs better than IEEE 802.15.4, which improves throughput, average medium access control (MAC) delay and due to the less number needed of CCA detecting to reduce power consumption.

摘要 iii Abstract iv Acknowledgements v Table of Contents vii List of Symbols ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 1.1 Wireless sensor network 1 1.2 Research Motivation 4 1.3 Organization of the Thesis 5 Chapter 2 Background and Related works 6 2.1 IEEE 802.15.4 Overview 6 2.1.1 Components of the IEEE 802.15.4 WPAN 7 2.1.2 Network Topologies 8 2.1.3 PHY Layer 10 2.1.4 MAC Sublayer 13 2.1.5 Superframe Structure 15 2.1.6 CSMA/CA Algorithm 17 2.1.7 Data Transfer Model 20 2.1.8 Frame Format 25 2.2 Related Works 28 Chapter 3 Additional Carrier Sensing Algorithm 31 3.1 Description of ACS 31 3.2 System Model and Throughput Analysis 36 3.3 Analysis of Average MAC Delay 42 Chapter 4 System Simulation and Results 45 4.1 Simulation Environment and Parameter Setting 45 4.2 Simulation and Results Analysis 46 Chapter 5 Conclusion and Future Works 53 References 54 Appendix A Abbreviations and Acronyms 64

[1] I. F. Akyildiz, W. Su, Y. Sankarasubmmaiam, E. Cayirci, “A Survey on Sensor Networks,” IEEE Communication Magazine, pp. 102-114, Aug. 2002.
[2] F. Zhao, “Wireless Sensor Networks : A New Computing Platform for Tomorrow’s Internet,” in Proceeding of IEEE 6th Circuits and Systems Symposium, vol. 1, pp. 1-27, June 2004.
[3] D. Puccinelli, M. Haenggi, “Wireless Sensor Networks : Applications and Challenges of Ubiquitous Sensing,” IEEE Circuit and Systems Magazine, vol. 5, no. 3, pp. 19-31, 2005
[4] M. A. M. Vieira, D. C. S. Junior, “Survey on Wireless Sensor Network Devices,” in Proceeding of Emerging Technologies and Factory Automation’03, vol. 1, pp. 537-544, Sept. 2003.
[5] H. Luo, Y. Liu, S. K. Das, “Routing Correlated Data in Wireless Sensor Networks : A Survey,” IEEE Network Magazine, vol. 21, no. 6, pp. 40-47, November-December 2007.
[6] F. Sinrikaya, B. Yener, “Time Synchronization in Sensor Networks : A Survey,” IEEE Network Magazine, vol. 18, no. 4, pp. 45-50, July-Aug. 2004.
[7] Bart Scheers, Wim Mees, and Ben Lauwens, “Developments on an IEEE 802.15.4-based wireless sensor network,” Journal of Telecommunications and Information Technology, pp, 46-53 Feb. 2008.
[8] M. Ulema, “Wireless sensor networks: architectures, protocals, and management,” in Proceeding of Network Operations and Management Symposium’04, vol. 1, pp. 931, Apr. 2004.
[9] S. M. Diamond and M. G. Ceruti, “Application of Wireless Sensor Network to Military Information Integration,” in proceeding of Industrial Informatics, vol. 1, pp. 317322, June 2007.
[10] H. Bai, M. Atiquzzaman, and D. Lilja, “Wireless Sensor Network for Aircraft Health Monitoring,” in Proceeding of Broadband Networks’04, pp. 748750, Oct. 2004.
[11] W. Lin, D. Li, Y. Tan, J. Chen, T. Sun, “Architecture of Underwater Acoustic Sensor Networks: A Survey,” in Proceeding of first International Workshop on Intelligent Networks and Intelligent Systems, pp. 155159, Nov. 2008.
[12] A. M. Mahdy, “Marine Wireless Sensor Networks: Challenges and Applications, in proceeding of Networking’08, pp. 530535, Apr. 2008.
[13] R. Holman, J. Stanley and T. Ozkan-Haller, “Applying video sensor networks to nearshore environment monitoring,” IEEE Pervasive Computing, vol. 2, no. 4, pp. 1421, Oct. Dec. 2003.
[14] T. T. Hsieh, “Using sensor networks for highway and traffic applications,” IEEE Potentials, vol. 23, issue 2, pp. 1316, Apr.May 2004.
[15] Y. K. Kim, R. G. Evans, W. M. Iversen, “Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network,” IEEE Transactions on Instrumentation and Measurement, vol. 57, issue 7, pp. 13791387, July 2008.
[16] D. Steere, A. Baptista, and D. McNamee, C. Pu, J. Walpole, “Research challenges in environmental observation and forecasting systems,” in Proceeding of ACM/IEEE 6th annual international conference on Mobile computing and networking, Boston, pp. 292299, Aug. 2000.
[17] P. A. Morreale, “Wireless Sensor Network Applications in Urban Telehealth,” in Proceeding of 21st International Conference on Advanced Information Networking and Applications Workshops, vol. 2, pp. 810814, May 2007.
[18] O. Omeni, A. Wong, A. J. Burdett and C. Toumazou, ”Energy Efficient Medium Access Protocol for Wireless Medical Body Area Sensor Networks,” IEEE Transactions on Biomedical Circuits and Systems, vol. 2, issue 4, pp. 251259, Dec. 2008.
[19] L. Schwiebert, S. K. S. Gupta, and J. Weinmann, “Research challenges in wireless networks of biomedical sensors,” in Proceeding of 7th annual international conference on Mobile computing and networking, pp. 151165, 2001.
[20] J. Yin, Q. Yang, J. J. Pan, “Sensor-Based Abnormal Human-Activity Detection,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, issue 8, pp. 10821090, Aug. 2008.
[21] C. L. Yau, and W. Y. Chung, “IEEE 802.15.4 Wireless Mobile Application for Healthcare System,” in Proceeding of Convergence Information Technology’07, pp. 14331438, Nov. 2007
[22] S. D. Bao, C. C. Y. Poon, Y. T. Zhang and L. F. Shen, “Using the Timing Information of Heartbeats as an Entity Identifier to Secure Body Sensor Network,” IEEE Transactions on Information Technology in Biomedicine, vol. 12, issue 6, pp. 772779, Nov. 2008.
[23] C. Cordeiro, R. Fantacci, S. Gupta, J. Paradiso, A. Smailagic and M. Srivastava, “Body Area Networking: Technology and Applications,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 1, pp. 14, Jan. 2009.
[24] I. Martinez, J. Fernandez, M. Galarraga, L. Serrano, P. de Toledo, S. Jimenez-Fernandez, S. Led, M. Martfnez-Espronceda and J. Garcia, “Implementation of an end-to-end standard-based patient monitoring solution,” IET Communications, vol. 2, no. 2, pp. 181191, Feb. 2008.
[25] E. Monton, J. F. Hernandez, J. M. Blasco, T. Herve, J. Micallef, I. Grech, A. Brincat and V. Traver, “Body area network for wireless patient monitoring,” IET Communications, vol. 2, issue 2, pp. 215222, Feb. 2008.
[26] T. Ahonen, R. Virrankoski and M. Elmusrati, “Greenhouse Monitoring with Wireless Sensor Network,” in proceeding of IEEE/ASME International Conference on Mechtronic, Embedded Systems and Applications, pp. 403408, Oct. 2008.
[27] F. Ciancetta, B. D'Apice, D. Gallo and C. Landi, “Plug-n-Play Smart Sensor Network with Dynamic Web Service,” IEEE Transactions on Instrumentation and Measurement, vol. 57, issue 10, pp. 21362145, Oct. 2008.
[28] J. A. Guierrez, “On the use of IEEE 802.15.4 to enable wireless sensor networks in building automation,” in Proceeding of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 3, pp. 18691869, Sept. 2004.
[29] A. M. C. Lee, C. T. Angeles, M. C. R. Talampas, L. G. Sison and M. N. Soriano, “MotesArt: Wireless Sensor Network for Monitoring Relative Humidity and Temperature in an Art Gallery,” in proceeding of IEEE International Conference on Networking, Sensing and Control, pp. 12631268, Apr. 2008.
[30] M. Lin, Y. Wu, I. Wassell, “Wireless sensor network: Water distribution monitoring system,” in proceeding of IEEE Radio and Wireless Symposium, pp. 775778, Jan. 2008.
[31] K. H. Low, W. K. Leow, and M. H. Ang, “Autonomic mobile sensor network with self-coordinated task allocation and execution,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 36, issue 3, pp. 315327, May 2006.
[32] W. K. Park, I. Han, K. R. Park, “ZigBee based Dynamic Control Scheme for Multiple Legacy IR Controllable Digital Consumer Devices,” IEEE Transactions on Consumer Electronics, vol. 53, issue 1, pp. 172177, Feb. 2007.
[33] IEEE 802 Working Group, “Standard for Part 15.4: Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low Rate Wireless Personal Area Networks(LR-WPANs),” ANSI/IEEE 802.15.4, Oct. 2003.
[34] IEEE 802 Working Group, “Standard for Part 15.4: Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low Rate Wireless Personal Area Networks(LR-WPANs),” ANSI/IEEE 802.15.4, Sept. 2006.
[35] E. Callaway, P. Gorday, L Hester, “Home Networking with IEEE 802.15.4: A Developing Standard for Low-Rate Wireless Personal Area Networks,” IEEE Communication Magazine, pp. 70-77, Aug. 2002.
[36] G. Lu, B. Krishnamachari, C. S. Raghavendra, “Performance evaluation of the IEEE 802.15.4 MAC for low-rate low power wireless Networks,” in Proceeding of IEEE IPCCC, pp. 701-706, Apr. 2004.
[37] J. Zheng, M. J. Lee, “Will IEEE 802.15.4 Make Ubiquitous Networking a Reality? A Discussion on a Potential Low Power, Low Bit Rate Standard,” IEEE Communication Magazine, vol. 42, pp. 140-146, June 2004.
[38] J. A. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, B. Heile, “IEEE 802.15.4 : A Developing Standard for Low-Power Low-Cost Wireless Personal Area Networks,” IEEE Network Magazine, vol. 15, no. 4, pp. 12-19, Sept./Oct. 2001.
[39] J. S. Lee, “An Experiment on Performance Study of IEEE 802.15.4 Wireless Networks,” in Proceeding of Emerging Technologies and Factory Automation’05, vol. 2, Sept. 2005.
[40] J. T. Adams, “An Introduction to IEEE STD 802.15.4,” in Proceeding of Aerospace Conference, Mar. 2006.
[41] Jae Yeol Ha, Kim, T.H., Hong Seong Park, Sunghyun Choi, Wook Hyun Kwon, “An Enhanced CSMA-CA Algorithm for IEEE 802.15.4 LR-WPANs,” Communications Letters, vol. 11, no. 5, pp. 461- 463, May 2007.
[42] Chatzimisios, Boucouvalas, Vitsas, “Effectiveness of RTS/CTS handshake in IEEE 802.11a Wireless LANs,” Electronics Letters, vol.40, p 915 - 916, July 2004.
[43] Ai-Chun Pang, Hsueh-Wen Tseng, “Dynamic backoff for wireless personal networks,” in Proceeding of IEEE Global Telecommunication confernece, vol. 3, pp.1580-1584, Dec. 2004.
[44] Junkeun Song, Kee-Young Shin, Misun Yu, JinWon Kim, PyeongSoo Mah, “NACA: A New Adaptive CSMA/CA Algorithm of IEEE 802.15.4 in Beacon-enabled Networks,” in Proceeding of Advanced Communication Technology, The 9th International Conference, vol. 1, pp. 266-269, Feb. 2007.
[45] J. Lee, J. Y. Ha, J. Jeon, D. S. Kim, W. H. Kwon, “ECAP: A Bursty Traffic Adaptation Algorithm for IEEE 802.15.4 Beacon-Enable Networks,” in Proceeding of Vehicular Technology Conference, pp. 203-207, Apr. 2007.
[46] Jae-Han Lim, Byung Tae Jang, “Dynamic Duty Cycle Adaptation to Real-Time Data in IEEE 802.15.4 based WSN,” in Proceeding of Communications and Networking Conference, 2008. CCNC 2008. 5th IEEE, vol. 10-12, no. 10-12, pp. 353 - 357, Jan. 2008
[47] Sofie Pollin, Mustafa Ergen, Sinem Coleri Ergen and Bruno Bougard, “Performance analysis of slotted carrier sense IEEE 802.15.4 Acknowledged Uplink Transmissions,” in Proceeding of Wireless Communication and Networking Conference, pp. 1559-1564, Apr. 2008.
[48] Yijin Zhang, Pingping Xu, Zaichen Zhang, Guangguo Bi, “Throughput Analysis of IEEE 802.15.4 Slotted CSMA/CA Considering Timeout Period and Its Improvement,” in Proceeding of Communication systems ICCS 2006 10th IEEE Singapore International Conference, pp. 1-5, Oct. 2006.
[49] Zhijia Chen, Chuang Lin, P Hao Wen, Hao Yin, “An Analytical Model for Evaluating IEEE 802.15.4 CSMA/CA protocol in Low-rate wireless application,” in Proceeding of Advanced Information Networking and Applications Workshops, 2007, AINAW '07. 21st International Conference , vol. 2, pp. 899-904, May 2007.
[50] Ranjeet K. Patro, Manik Raina, Viswanath Ganapathy, Manohar Shamaiah, Chandrashekhara Thejaswi, “Analysis and improvement of contention access protocol in IEEE 802.15.4 star network,” in Proceeding of Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE Internatonal Conference, vol.8-11, no 8-11, pp. 1-8., Oct. 2007.
[51] F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “An Aloha protocol formultihop mobile wireless networks.”, IEEE Trans. Information Theory, vol. 52, no. 2, pp.421–436, February 2006.
[52] Jeong-Gil Ko, Yong-Hyun Cho and Hyogon Kim, “Performance evaluation of IEEE 802.15.4 MAC with different backoff range in wireless sensor networks,” IEEE Communication society, pp.1-5, Feb. 2006.
[53] Hao Wen, Chuang Lin, Zhi-Jia Chen, Hao Yin, Tao He and Eryk Dutkiewicz, “An Improved Markov Model for IEEE 802.15.4 Slotted CSMA/CA”, Journal of Computer Science and Technology, vol. 24, no. 3, pp. 495-504.(2009)
[54] Manjukumar Harthikote-Matha, Tarun Banka, Anura P. Jayasumana, "Performance Degradation of IEEE 802.15.4 Slotted CSMA/CA due to Hidden Nodes," 32nd IEEE Conference on Local Computer Networks (LCN 2007), pp.264-266. 2007
[55] Tae-Jin Lee, Hae Rim Lee, and Min Young Chung, “MAC Throughput Limit Analysis of Slotted CSMA/CA in IEEE 802.15.4 WPAN”, IEEE Communications Letters, vol. 10, no. 7, pp. 561-563.(2006)
[56] MyungJune Youn, Young-Yul Oh, Jaiyong Lee, Yeonsoo Kim, “IEEE 802.15.4 based QoS support Slotted CSMA/CA MAC protocol for Wireless Sensor Networks,” in Proceeding of IEEE Sensor Technologies and Applications SensorComm 2007. International Conference, vol.14-20, no 14-20, pp. 113-117, Oct. 2007.
[57] Bih-Hwang Lee, Huai-Kuei Wu, “Study on Backoff Algorithm for IEEE 802.15.4 LR-WPAN,” in Proceeding of Advanced Information Networking and Applications, 2008. AINA 2008. 22nd International Conference, pp. 403- 409, Mar. 2008.
[58] K. Sarvakar, P. S. Patel, “An Efficient Hybrid MAC Layer Protocol Utilized for Wireless Sensor Networks.”, International Conference on Wireless Communication and Sensor Networks (WCSN), Allahabad, India, pp. 22-26, Dec. 2008.
[59] H. Deng; J. Shen; B. Zhang; et al. “Performance Analysis for Optimal Hybrid Medium Access Control in Wireless Sensor Networks.”, In Proceedings of IEEE Global Telecommunications (GLOBECOM) Conference, New Orleans, Louisiana, USA, pp. 203-207, Nov. 2008.
[60] I. Rhee; A. Warrier, M. Aia, J. Min, M. L. Sichitiu, “Z-MAC: A Hybrid MAC for Wireless Sensor Networks.”, IEEE/ACM Transactions on Networking, vol.16, no. 3, pp. 511-524. (2008)
[61] A. Koubâa, M. Alves and E. Tovar, “A comprehensive simulation study of slotted CSMA/CA for IEEE 802.15.4 wireless sensor networks,” In 5th IEEE International Workshop on Factory Communication Systems (WFCS 2006), pp. 183–192. Torino, Italy, (2006)
[62] L. Fu, S. C. Liew and J. Huang, “Effective carrier sensing in csma networks under cumulative interference.” In Proc. IEEE INFOCOM,2010
[63] L. B. Jiang and S. C. Liew, “Improving throughput and fairness by reducing exposed and hidden nodes in 802.11 networks.” IEEE Trans. Mobile Computing, vol. 7, no. 1, pp. 34–49, January 2008.
[64] L. B. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput and utility maximization in wireless networks.”, In Proc. Allerton Conf. on Comm., Control, and Computing, 2008.
[65] X. Wang and K. Kar, “Throughput modelling and fairness issues in CSMA/CA based ad-hoc networks.”, In Proc. IEEE INFOCOM, 2005
[66] C.-K. Chau, M. Chen, and S. C. Liew, “Capacity of Large-scale CSMA Wireless Networks.”, In International Conference on Mobile Computing and Networking.(2009)
[67] Y. C. Tay, K. Jamieson, and H. Balakrishnan, “Collision-minimizing CSMA and its applications to wireless sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 6, pp. 1048–1057.(2004)
[68] C.Y. Jung, H.Y. Hwang, D.K. Sung, G.U. Hwang, “Enhanced Markov Chain Model and Throughput Analysis of the Slotted CSMA/CA for IEEE 802.15.4 Under Unsaturated Traffic Conditions”, IEEE Transactions on Vehicular Technology, vol. 58, issue 1, pp. 473 – 478, Jan. (2009)
[69] J. Y. Ha; T. H. Kim; H. S. Park; S. Choi; W. H. Kwon, “An Enhanced CSMA-CA Algorithm for IEEE 802.15.4 LR-WPANs.”, IEEE Communications Letters, vol. 11, no. 5, pp. 461463.(2007)
[70] J. Misic; V. B. Misic; S. Shafi, “Performance of IEEE 802.15.4 beacon enable PAN with uplink transmissions in non-saturation mode-access delay for finite buffers.”, In Proceedings of First International Conference on Broadband Networks, San Jose, California, USA, pp. 416425. Oct. 2004.
[71] J. Misic; S. Shafi; V. B. Misic, “The impact of MAC parameters on the performance of 802.15.4 PAN.”, Ad Hoc Networks, vol. 3, no. 5, pp. 509528.(2005)
[72] Shuai Fang1, Lu Rong2, Qiang Xu1, and Yang Du1, “Analysis of Performance of Unsaturated Slotted IEEE 802.15.4 Medium Access Layer”, PIERS Proceedings, pp. 348-352.(2009)
[73] J.He, Z.Tang, H.H.Chen, S.Wang, “An accurate Markov model for slotted CSMA/CA algorithm in IEEE 802.15.4 networks”, IEEE Communications Letters, vol. 12, no. 6, pp.420-422.(2008)
[74] Wei Wang, Qiang Xu, Shuai Fang, Honglin Hu, Lu Rong, and Yang Du, “Performance analysis of unsaturated slotted IEEE 802.15.4 medium access layer”, IET International Communication Conference on Wireless Mobile & Computing (CCWMC 2009), pp.53–56.(2009)
[75] T. R. Park; T. H. Kim; J. Y. Choi; S. Choi; W. H. Kwon, “Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA.”, Electronics Letters, vol. 41, no. 18.(2005)
[76] T. J. Lee; H. R. Lee; M. Y. Chung, “MAC Throughput Limit Analysis of Slotted CSMA/CA in IEEE 802.15.4 WPAN.”, IEEE Communications Letters, vol. 10, no. 7, pp. 561563.(2006)
[77] C. Y. Jung; H. Y. Hwang; D. K. Sung; G. U. Hwang, “Enhanced Markov Chain Model and Throughput Analysis of the Slotted CSMA/CA for IEEE 802.15.4 Under Unsaturated Traffic Conditions.”, IEEE Transactions on Vehicular Technology, vol. 58, no. 1, pp. 473478. (2009)
[78] S. Pollin; M. Ergen; S. C. Ergen; B. Bougard; et al., “Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer.”, IEEE Transactions on Wireless Communications, vol. l7, no. 9, pp. 33593371. (2008)
[79] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function.”, IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 535547.(2000)

QR CODE