簡易檢索 / 詳目顯示

研究生: Aris Yan Jaya Mendrofa
Aris Yan Jaya Mendrofa
論文名稱: Dynamic Feature Selection for the Prediction of On-site Construction Productivity Using SOS-LSSVM
Dynamic Feature Selection for the Prediction of On-site Construction Productivity Using SOS-LSSVM
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 鄭明淵
Min-Yuan Cheng
張陸滿
Luh-Maan Chang
曾惠斌
Hui-Ping Tserng
方亦卓
Yi-Cho Fang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 86
中文關鍵詞: On-site ProductivityPrediction ModelFeature SelectionSymbiotic Organisms SearchLeast Square Support Vector Machine
外文關鍵詞: On-site Productivity, Prediction Model, Feature Selection, Symbiotic Organisms Search, Least Square Support Vector Machine
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Productivity is one of the crucial elements for managing construction operations effectively, which has a direct relationship among time and cost. The prediction of productivity is important in order to make the productivity estimate more effective in decision making process for future construction projects. This study aims to identify the input parameters that highly relevant to the on-site productivity in construction project that can achieve the higher accuracy of the prediction model performance. The Symbiotic Organisms Search-Least Square Support Vector Machine with Feature Selection (SOS-LSSVMFS) is developed in order to assist the goal of this study, which incorporates LS-SVM, FS, and SOS. The historical data of real case regarding the on-site construction productivity is presented in order to validate the performance of the proposed model. The performance result obtained is compared to other AI techniques, include BPNN, SVM, ESIM, LS-SVM, and SOS-LSSVM. The results demonstrated that SOS-LSSVMFT is capable to select the highly relevant input variables and increase the performance accuracy of on-site construction productivity prediction model.


    Productivity is one of the crucial elements for managing construction operations effectively, which has a direct relationship among time and cost. The prediction of productivity is important in order to make the productivity estimate more effective in decision making process for future construction projects. This study aims to identify the input parameters that highly relevant to the on-site productivity in construction project that can achieve the higher accuracy of the prediction model performance. The Symbiotic Organisms Search-Least Square Support Vector Machine with Feature Selection (SOS-LSSVMFS) is developed in order to assist the goal of this study, which incorporates LS-SVM, FS, and SOS. The historical data of real case regarding the on-site construction productivity is presented in order to validate the performance of the proposed model. The performance result obtained is compared to other AI techniques, include BPNN, SVM, ESIM, LS-SVM, and SOS-LSSVM. The results demonstrated that SOS-LSSVMFT is capable to select the highly relevant input variables and increase the performance accuracy of on-site construction productivity prediction model.

    ABSTRACT i ACKNOWLEDGEMENT ii TABLE OF CONTENTS iii LIST OF ABBREVIATIONS vi LIST OF SYMBOLS viii LIST OF FIGURES x LIST OF TABLES xi CHAPTER 1. INTRODUCTION 1 1.1 Research Motivation 1 1.2 Research Objective 4 1.3 Scope of Study 5 1.3.1 Research Boundary 5 1.3.2 Assumptions 5 1.4 Research Methodology 5 1.4.1 Introduction 8 1.4.2 Literature Review 8 1.4.3 Model Construction 9 1.4.4 Case Study and Model Implementation 9 1.4.5 Conclusions and Recommendations 10 1.5 Research Outline 10 CHAPTER 2. LITERATURE REVIEW 11 2.1 Productivity in Construction 11 2.2 Factors Affecting On-site Construction Productivity 12 2.3 Construction Productivity Modeling Techniques 16 2.4 Least Square Support Vector Machine (LS-SVM) 17 2.5 Feature Selection 20 2.6 Symbiotic Organisms Search (SOS) 22 2.6.1 Mutualism Phase 23 2.6.2 Commensalism Phase 24 2.6.3 Parasitism Phase 24 CHAPTER 3. SYMBIOTIC ORGANISMS SEARCH - LEAST SQUARE SUPPORT VECTOR MACHINE WITH FEATURE SELECTION (SOS-LSSVMFS) 25 3.1 Model Architecture 25 3.2 Model Application Process 27 CHAPTER 4. CASE STUDY AND IMPLEMENTATION 35 4.1 Case study 35 4.2 Model Validation and Application 39 4.2.1 Data Preprocessing and Cross Validation 39 4.2.2 Parameters Configuration 41 4.2.3 Model Training 41 4.2.4 Model Testing 41 4.3 Result and Comparison 42 4.3.1 Performance Result 42 4.3.2 Performance Comparison 45 4.3.3 Testing Result 49 CHAPTER 5. CONCLUSION AND RECOMMENDATION 52 5.1 Research Purpose Review and Summary 52 5.2 Conclusions 52 5.3 Recommendations 53 REFERENCES 54 APPENDIX A 63

    Al-Zwainy, F. M. S., Abdulmajeed, M. H., & Aljumaily, H. S. M. (2013). Using Multivariable Linear Regression Technique for Modeling Productivity Construction in Iraq. Open Journal of Civil Engineering, Vol.03No.03, 9. doi:10.4236/ojce.2013.33015
    Alfeld, L. E. (1988). Construction Productivity: On-site Measurement and Management: McGraw-Hill.
    Alzwainy, F., Rasheed, H. A., & Ibraheem, H. F. (2012). Development of the construction productivity estimation model using artificial neural network for finishing works for floors with marble (Vol. 7).
    Arashpour, M., & Arashpour, M. (2015). Analysis of Workflow Variability and Its Impacts on Productivity and Performance in Construction of Multistory Buildings (Vol. 31).
    Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics): Springer-Verlag.
    Cheng, M. Y., & Prayogo, D. (2014). Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112. doi:https://doi.org/10.1016/j.compstruc.2014.03.007
    Cheng, M. Y., & Prayogo, D. (2016). Modeling the Permanent Deformation Behavior of Asphalt Mixtures Using a Novel Hybrid Computational Intelligence: ISARC 2016 - 33rd International Symposium on Automation and Robotics in Construction, Page: 1009 - 1015.
    Cheng, M. Y., Prayogo, D., & Wu, Y. W. (2014). Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete Mixture. Journal of Computing in Civil Engineering, 28(4), 06014003. doi:10.1061/(ASCE)CP.1943-5487.0000347
    Cheng, M. Y., Prayogo, D., & Wu, Y. W. (2018). Prediction of permanent deformation in asphalt pavements using a novel symbiotic organisms search–least squares support vector regression. Neural Computing and Applications. doi:10.1007/s00521-018-3426-0
    Cheng, M. Y., & Roy, A. (2010). Evolutionary fuzzy decision model for construction management using support vector machine (Vol. 37).
    Cheng, M. Y., & Roy, A. F. V. (2011). Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines. International Journal of Project Management. doi:https://doi.org/10.1016/j.ijproman.2010.01.004
    Cheng, M. Y., Tsai, H. C., & Liu, C. L. (2009). Artificial intelligence approaches to achieve strategic control over project cash flows. Automation in Construction, 18(4), 386-393. doi:https://doi.org/10.1016/j.autcon.2008.10.005
    Cheng, M. Y., Wibowo, D. K., Prayogo, D., & Roy, A. F. V. (2015). Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model. Journal of Civil Engineering and Management, 21(7), 881-892. doi:10.3846/13923730.2014.893922
    Cheng, M. Y., & Wu, Y. W. (2009). Evolutionary support vector machine inference system for construction management. Automation in Construction, 18(5), 597-604. doi:https://doi.org/10.1016/j.autcon.2008.12.002
    Chou, J.-S., Chiu, C.-K., Farfoura, M., & Al-Taharwa, I. (2011). Optimizing the Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-Mining Techniques. Journal of Computing in Civil Engineering, 25(3), 242-253. doi:10.1061/(ASCE)CP.1943-5487.0000088
    Chou, J.-S., & Thedja, J. P. P. (2016). Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Automation in Construction. doi:https://doi.org/10.1016/j.autcon.2016.03.015
    Christian, J., & Hachey, D. (1995). Effects of Delay Times on Production Rates in Construction. Journal of Construction Engineering and Management, 121(1), 20-26. doi:10.1061/(ASCE)0733-9364(1995)121:1(20)
    Dai, J., Goodrum Paul, M., & Maloney William, F. (2009). Construction Craft Workers’ Perceptions of the Factors Affecting Their Productivity. Journal of Construction Engineering and Management, 135(3), 217-226. doi:10.1061/(ASCE)0733-9364(2009)135:3(217)
    Danasingh, A. A., Balamurugan, S., & Epiphany, J. L. (2016). Literature Review on Feature Selection Methods for High-Dimensional Data (Vol. 136).
    Durdyev, S., & Mbachu, J. (2011). On-site Labour Productivity of New Zealand Construction Industry: Key Constraints and Improvement Measures (Vol. 11).
    El-Gohary Khaled, M., Aziz Remon, F., & Abdel-Khalek Hesham, A. (2017). Engineering Approach Using ANN to Improve and Predict Construction Labor Productivity under Different Influences. Journal of Construction Engineering and Management, 143(8), 04017045. doi:10.1061/(ASCE)CO.1943-7862.0001340
    Enshassi, A., Mohamed, S., Mustafa, Z. A., & Mayer, P. E. (2007). Factors affecting labour productivity in building projects in the Gaza strip. Journal of Civil Engineering and Management. doi:10.1080/13923730.2007.9636444
    Eslamdoost, E., & Heravi, G. (2013). Identification and evaluation of effective factors on labor productivity in power plant construction projects (Vol. 1).
    Ezeldin, A. S., & Sharara Lokman, M. (2006). Neural Networks for Estimating the Productivity of Concreting Activities. Journal of Construction Engineering and Management, 132(6), 650-656. doi:10.1061/(ASCE)0733-9364(2006)132:6(650)
    Fayek Aminah, R., & Oduba, A. (2005). Predicting Industrial Construction Labor Productivity Using Fuzzy Expert Systems. Journal of Construction Engineering and Management. doi:10.1061/(ASCE)0733-9364(2005)131:8(938)
    Gestel, T. V., Suykens, J. A. K., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., . . . Vandewalle, J. (2004). Benchmarking Least Squares Support Vector Machine Classifiers Mach. Learn, 54(1), 5-32. doi:10.1023/B:MACH.0000008082.80494.e0
    Graham, D., & Smith, S. D. (2004). Estimating the productivity of cyclic construction operations using case-based reasoning. Advanced Engineering Informatics, 18(1), 17-28. doi:https://doi.org/10.1016/j.aei.2004.03.001
    Grau, D., Caldas, C. H., Haas, C. T., Goodrum, P. M., & Gong, J. (2009). Assessing the impact of materials tracking technologies on construction craft productivity. Automation in Construction. doi:https://doi.org/10.1016/j.autcon.2009.04.001
    Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection J. Mach. Learn. Res. 3, 1157-1182.
    Halligan David, W., Demsetz Laura, A., Brown James, D., & Pace Clark, B. (1994). Action‐Response Model and Loss of Productivity in Construction. Journal of Construction Engineering and Management, 120(1), 47-64. doi:10.1061/(ASCE)0733-9364(1994)120:1(47)
    Han, J., Kamber, M., & Pei, J. (2006). Data Mining: Concepts and Techniques.
    Hanna, A. S., Taylor, C. S., & Sullivan, K. T. (2005). Impact of Extended Overtime on Construction Labor Productivity. Journal of Construction Engineering and Management, 131(6), 734-739. doi:10.1061/(ASCE)0733-9364(2005)131:6(734)
    Hannula, M. (2002). Total Productivity measurement based on partial productivity ratios. International Journal of Production Economics(78), 57-67.
    Heravi, G., & Eslamdoost, E. (2015). Applying Artificial Neural Networks for Measuring and Predicting Construction-Labor Productivity. Journal of Construction Engineering and Management, 141(10), 04015032. doi:10.1061/(ASCE)CO.1943-7862.0001006
    Hwang, S. (2010). Cross-Validation of Short-Term Productivity Forecasting Methodologies. Journal of Construction Engineering and Management, 136(9), 1037-1046. doi:10.1061/(ASCE)CO.1943-7862.0000230
    Jarkas Abdulaziz, M., & Bitar Camille, G. (2012). Factors Affecting Construction Labor Productivity in Kuwait. Journal of Construction Engineering and Management, 138(7), 811-820. doi:10.1061/(ASCE)CO.1943-7862.0000501
    Khan, Z. (2005). Modeling and Parameter Ranking of Construction Labor Productivity. (M.S.), Concordia University, Montreal, Canada.
    Ko, Y., & Han, S. (2015). Development of Construction Performance Monitoring Methodology using the Bayesian Probabilistic Approach (Vol. 14).
    Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1), 273-324. doi:https://doi.org/10.1016/S0004-3702(97)00043-X
    Lema, N. M. (1995). Construction of Labour Productivity Modeling. University of Dar Elsalaam. Journal of Project Management, Vol. 16, no. 2, pp. 107-113.
    Mahfouz T. (2012). A Productivity Decision Support System For Construction Projects Through Machine Learning (ML). Proceedings of the CIB W78 2012: 29th International Conference –Beirut, Lebanon, 17-19 October.
    Makulsawatudom, A., & Emsley, M. (2003). Factors Affecting the Productivity of the Construction Industry in Thailand: The Foremen's Perception.
    Manser, M. E. (2001). The Bureau of Labor Statistics (BLS) Productivity Programs.
    Mills, A. (2001). A systematic approach to risk management for construction. Structural Survey, 19(5), 245-252. doi:10.1108/02630800110412615
    Mirahadi, F., & Zayed, T. (2016). Simulation-based construction productivity forecast using Neural-Network-Driven Fuzzy Reasoning. Automation in Construction, 65, 102-115. doi:https://doi.org/10.1016/j.autcon.2015.12.021
    Mojahed, S. a. A., F. (2008). Major factors influencing productivity of water and wastewater treatment plant construction. International Journal of Project Management, 26, 195-202. doi:10.1016/j.ijproman.2007.06.003
    Moselhi, O., Assem, I., & El-Rayes, K. (2005). Change Orders Impact on Labor Productivity. Journal of Construction Engineering and Management, 131(3), 354-359. doi:10.1061/(ASCE)0733-9364(2005)131:3(354)
    Ng, S. T., Skitmore, R. M., Lam, K. C., & Poon, A. W. C. (2004). Demotivating factors influencing the productivity of civil engineering projects. International Journal of Project Management, 22(2), 139-146. doi:https://doi.org/10.1016/S0263-7863(03)00061-9
    Oglesby, C. H., Parker, H. W., & Howell, G. A. (1989). Productivity improvement in construction.
    Olomolaiye, P. O., Jayawardane, A. K. W., & Harris, F. (1998). Construction productivity management. Essex, England: Longman.
    Oral, E., & Oral, M. (2010). Predicting construction crew productivity by using Self Organizing Maps (Vol. 19).
    Park, H.-S. (2006). Conceptual framework of construction productivity estimation (Vol. 10).
    Park, H.-S., Thomas, S. R., & Tucker, R. L. (2005). Benchmarking of Construction Productivity. Journal of Construction Engineering and Management, 131(7), 772-778. doi:10.1061/(ASCE)0733-9364(2005)131:7(772)
    Pham, A.-D., Hoang, N.-D., & Nguyen, Q.-T. (2016). Predicting Compressive Strength of High-Performance Concrete Using Metaheuristic-Optimized Least Squares Support Vector Regression. Journal of Computing in Civil Engineering, 30(3), 06015002. doi:10.1061/(ASCE)CP.1943-5487.0000506
    Prayogo, D. (2018). Metaheuristic-Based Machine Learning System for Prediction of Compressive Strength based on Concrete Mixture Properties and Early-Age Strength Test Results. Journal of Civil Engineering Science and Application. doi:https://doi.org/10.9744/ced.20.1.21-29
    Prayogo, D., & Susanto, Y. T. T. (2018). Optimizing the Prediction Accuracy of Friction Capacity of Driven Piles in Cohesive Soil Using a Novel Self-Tuning Least Squares Support Vector Machine. Advances in Civil Engineering, 2018, 9. doi:10.1155/2018/6490169
    Shehata, M. E., & El-Gohary, K. M. (2011). Towards improving construction labor productivity and projects’ performance. Alexandria Engineering Journal, 50(4), 321-330. doi:https://doi.org/10.1016/j.aej.2012.02.001
    Smithers, G. L., & Walker, D. H. T. (2000). The effect of the workplace on motivation and demotivation of construction professionals. Construction Management and Economics, 18(7), 833-841. doi:10.1080/014461900433113
    Song, L., & AbouRizk Simaan, M. (2008). Measuring and Modeling Labor Productivity Using Historical Data. Journal of Construction Engineering and Management, 134(10), 786-794. doi:10.1061/(ASCE)0733-9364(2008)134:10(786)
    Sönmez, R. (2007). Impact of Occasional Overtime on Construction Labor Productivity: Quantitative Analysis. 34, 803-808.
    Sonmez, R., & Rowings James, E. (1998). Construction Labor Productivity Modeling with Neural Networks. Journal of Construction Engineering and Management, 124(6), 498-504. doi:10.1061/(ASCE)0733-9364(1998)124:6(498)
    Suykens, J., Gestel, J. V., Brabanter, J. D., Moor, B. D., & Vandewalle, J. (2002). Least Square Support Vector Machines. World Scientific Publishing Co. Pte. Ltd.
    Suykens, J. A. K., & Vandewalle, J. (1999). Least Squares Support Vector Machine Classifiers Neural Process. Lett. 9(3), 293-300. doi:10.1023/a:1018628609742
    Suykens, J. A. K., Vandewalle, J., & De Moor, B. (2001). Optimal control by least squares support vector machines. Neural Networks, 14(1), 23-35. doi:https://doi.org/10.1016/S0893-6080(00)00077-0
    Talbi, E. G. (2009). Metaheuristics: From Design to Implementation. (Vol. 74. doi:John Wiley & Sons. http://dx.doi.org/10.1002/9780470496916
    Telsang M. (2000). Industrial Engineering and Production Management. S. Chand & Company LTD. Ram Nager, New Delhi.
    Thomas, H. R. (2009). Construction Learning Curves. Practice Periodical on Structural Design and Construction, 14(1), 14-20. doi:10.1061/(ASCE)1084-0680(2009)14:1(14)
    Thomas, H. R., Mathews Cody, T., & Ward James, G. (1986). Learning Curve Models of Construction Productivity. Journal of Construction Engineering and Management, 112(2), 245-258. doi:10.1061/(ASCE)0733-9364(1986)112:2(245)
    Tsehayae, A. A., and Fayek, A. R. (2014). Identification and comparative analysis of key parameters influencing construction labour productivity in building and industrial projects. 878-891. doi:https://doi.org/10.1139/cjce-2014-0031
    Unler, A., & Murat, A. (2010). A discrete particle swarm optimization method for feature selection in binary classification problems. European Journal of Operational Research, 206(3), 528-539. doi:https://doi.org/10.1016/j.ejor.2010.02.032
    Vereen, S. C., Rasdorf, W., & Hummer, J. E. (2016). Development and Comparative Analysis of Construction Industry Labor Productivity Metrics. Journal of Construction Engineering and Management, 142(7), 04016020. doi:10.1061/(ASCE)CO.1943-7862.0001112
    Wang, F. (2005). On-site Labor Productivity Estimation Using Neural Networks. Concordia University, Montreal, Canada.
    Yan, K., & Shi, C. (2010). Prediction of elastic modulus of normal and high strength concrete by support vector machine. Construction and Building Materials, 24(8), 1479-1485. doi:https://doi.org/10.1016/j.conbuildmat.2010.01.006
    Yu, L., Chen, H., Wang, S., & Lai, K. K. (2009). Evolving least squares support vector machines for stock market trend mining. IEEE Transactions on Evolutionary Computation, 13(1), 87-102. doi:10.1109/TEVC.2008.928176

    無法下載圖示 全文公開日期 2024/01/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE