簡易檢索 / 詳目顯示

研究生: 徐子浩
Tzu-hao Hsu
論文名稱: 電漿熱噴塗高散熱氧化鋁/銅複合材料
Al2O3/Cu Composite-Layered Structures of High Thermal Spreading Capability Formed by Plasma Spray Coating
指導教授: 林舜天
Shun-tian Lin
口試委員: 林寬泓
Kuan-hong Lin
周賢鎧
Shyan-kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 61
中文關鍵詞: 電漿熱噴塗表面粗糙度熱阻抗值崩潰電壓
外文關鍵詞: Plasma spray coating, thermal resistance, heat spreading, breakdown voltage
相關次數: 點閱:377下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱噴塗氧化鋁製程提供了中高功率散熱模組之導熱絕緣層一種新的製作方法。傳統網印製程之氧化鋁/銅複合材料,由於製程限制使得氧化鋁塗層厚度無法降低,在高溫下與銅材之間有剝落的現象產生,導致氧化鋁塗層熱阻抗值增加,崩潰電壓減低。另一方面,本研究探討電漿熱噴塗氧化鋁/銅高導熱複合材料中,噴塗氧化鋁的顆粒大小、塗層厚度及塗層表面粗糙度對熱阻抗值以及崩潰電壓的影響。其中可觀察出最低的熱阻抗值、表面粗糙度及穩定的崩潰電壓值的氧化鋁塗層之噴塗功率為40 kW、粉末顆粒尺寸為22~45 μm、塗層厚度為20 μm、粉末速度為750 m/s、Ar氣流量為45 L/min、噴塗距離為140 mm及噴塗角度為90度。同時也發現,氧化鋁塗層的熱阻抗值會隨其表面粗糙度的增加而增加;以及厚度40 μm之氧化鋁塗層的崩潰電壓值受水氣的影響較大。


    Thermal spray coating of alumina onto copper offers a new alternative in the production of substrates for high power modules.The particle size of alumina, the coating thickness, and the consequent surface roughness if the alumina layer were found to play important roles on the thermal resistance and breakdown voltage of the substrate of composite-layered structure. In the process variables investigated in this study, the combination of a lowest surface roughness, a lowest thermal resistance, and a highly reliable breakdown voltage was attained when spray-coated layer of about 20 μm in thickness was achieved by spray coating an alumina powder having particle size ranging between 22 and 45 μm under the conditions of a power of 40 kW, a spraying velocity of 750 m/s, an argon flow rate of 45 L/min, a praying distance of 140 mm, and a spraying angle of 90◦. It was also found that the thermal resistance of the composite layer increased with the increase in surface roughness. Even with a coating thickness as large as 40 μm, the breakdown voltage was still greatly influenced by the moisture content in the alumina dielectric layer.

    目 錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 電漿熱噴塗之導熱絕緣材料與基板之比較 3 1-2-1電漿熱噴塗之導熱絕緣材料 3 1-2-2高功率散熱基板 4 第二章 理論基礎 6 2-1 熱噴塗原理 6 2-1-1火焰熱噴塗(Flame Spray Coating) 7 2-1-2電漿熱噴塗(Plasma Spray Coating) 8 2-1-3高速火焰熱噴塗(HVOF Spray Coating) 10 2-1-4電弧熱噴塗(Arc Spray Coating) 11 2-2 介面材料 13 2-3 熱傳導及熱阻抗值量測原理 16 2-4 崩潰電壓量測原理 19 第三章 實驗方法 23 3-1 實驗流程 23 3-2 試片準備 25 3-3 性質量測與分析 27 第四章 結果與討論 29 4-1 網印氧化鋁/銅複合材料 29 4-1-1熱阻抗值分析 29 4-1-2電氣絕緣性分析 30 4-1-3崩潰電壓分析 30 4-1-4微結構分析 32 4-2 電漿熱噴塗氧化鋁/銅複合材料 35 4-2-1表面粗糙度與熱阻抗值之關係 35 4-2-2電絕緣性分析 40 4-2-3崩潰電壓分析 40 4-2-4微結構分析 42 4-2-5 XRD分析 49 第五章 結論 52 第六章 參考文獻 53 附錄A 57 附錄B 58 附錄C 59 附錄D 61

    第六章 參考文獻

    [1] H. Xiao, “ Introduction to Semiconductor Manufacturing Technology ”, Prentice-Hall Inc., New Jersey, (2001) 6~8

    [2] T. F. Lemczyk, B. Mack, J. R. Culham, M. M. Yovanovich, “PCB Trace Thermal Analysis and Effective Conductivity”, Proceedings - IEEE Semiconductor Thermal and Temperature Measurement Symposium, Phoenix, (1991) 15~22

    [3] J. Petroski, “Spacing of High-Brightness LEDs on Metal Substrate PCB for Proper Thermal Performance”, Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, Las Vegas, (2004) 507~514.

    [4] S. D. Pascoli, P. E. Bagnoli, C. Casarosa, “Thermal Analysis of Insulated Metal Substrates for Automotive Electronic Assemblies”, Microelectronics Journal, 30 (1999) 1129 ~1135

    [5] S. I. Asai, M. Funaki, H. Sawa, K. Kato, “Fabrication of an Insulated Metal Substrate (IMS), Having an Insulating Layer with a High Dielectric Constant”, IEEE Transactions Components, Hybrids and Manufacturing Technology, 16(5) (1993) 499~504.

    [6] C. Marc, N. James, A. Robert, “Power Modules with IMS Substrates for Automotive Application”, IEEE Vehicular Technology Conference, Birmingham, 4 (2002) 2056~2063.

    [7] http://tech.digitimes.com.tw/

    [8] F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, “High Thermal Conductivity Aluminum Nitride Ceramic Substrates and Packages”, IEEE Transactions Components, Hybrids and Manufacturing Technology, 13(2) (1990) 313~319.

    [9] E. K. Chang, M. J. Kirschner, “AlN Defect Chemistry Dependence on Sintering”, Journal of Materials Science Letters, 15(8) (1996) 1580~1581.

    [10] 林益正,“氮化鋁製程與性能之研究”,國立台灣科技大學,碩士論文, (2005)

    [11] http://www.laminaceramics.com/

    [12] http://www.bitechnologies.co.jp/products/anotherm.html

    [13] http://en.wikipedia.org/wiki/Main_Page

    [14] 汪建民編,”陶瓷技術手冊(下)”,中華民國粉末冶金協會共同出版,新竹縣竹東鎮,(1994) 683~715, 849~875

    [15] D. W. Richerson, “Modern Ceramic Engineering-Properties, Processing, and Use in Design”, Marcel Dekker, Inc., New York, (1990) pp.222~224.

    [16] J. S. Reed, “Principles of Ceramics Processing”, John Wiley & Sons, Inc., New York, (1995) pp.576 ~578.

    [17] Y. Zeng, S. W. Lee, C. X. Ding, “Plasma Spray Coatings in Different Nano -size Alumina”, Materials Letters, 57 (2002) 495~501.

    [18] P. P. Psyllaki, M. Jeandin, D. I. Pantelis, “Microstructure and Wear Mechanisms of Thermal-Sprayed Alumina Coatings”, Materials Letters, 47 (2001) 77~82.

    [19] A. Koutsomichalis, C. Panagopoulos, H. Badekas, “Wear Behaviors of Alumina Plasma-Sprayed Coating on an Al-Cu Alloy”, Materials Letters, 18 (1993) 19~24.

    [20] B. Q. Wang, M. W. Seitz, “Comparison in Erosion Behavior of Iron-Base Coatings Sprayed by Three Different Arc-Spray Processes”, Wear, 250 (2001) 755~761.

    [21] J. C. Fang, W. J. Xu, Z. Y Zhao, “Arc Spray Forming”, Journal of Materials Processing Technology, 164~165 (2005) 1032~1037.

    [22] L. Lin, K. Han, “Optimization of Surface Properties by Flame Spray Coating and Boriding”, Surface and Coatings Technology, 106 (1998) 100~105.

    [23] I. M. Kusoglu, E. Celik, H. Cetinel, I. Ozdemir, O. DemirKurt, K. Onel, “Wear Behavior of Flame-Sprayed Al2O3–TiO2 Coatings on Plain Carbon Steel Substrates”, Surface and Coatings Technology, 200 (2005) 1173 ~1177.

    [24] M. U. Devi, “Microstructure of Al2O3/SiC Nanocomposite Ceramic Coatings Prepared by High Velocity Oxy-Fuel Flame Spray Process”, Scripta Materialia, 50 (2004) 1073~1078

    [25] E. Turunen, T. Varis, T. E. Gustafsson, J. Keskinen, T. Falt, S. P. Hannula, “Parameter Optimization of HVOF Sprayed Nanostructured Alumina and Alumina–Nickel Composite Coatings”, Surface and Coatings Technology, 200 (2006) 4987~4994.

    [26] C. W. Mossor, “Electrical Breakdown of Thermal Spray Alumina Ceramic Applied to AlSiC Baseplates Used in Power Module Packaging”, Virginia Polytechnic Institute and State University, M.S. Thesis, (1999).

    [27] http://www.gordonengland.co.uk/

    [28] 岡本正秋, иヤユ⑦ьтШヱЗソ火力材デソ利用研究, 富山共同火力發電(株)

    [29] 竹田博光編,賴耿陽譯,”陶瓷材料覆膜技術”,復漢出版社出版,台南市,(1989).

    [30] K. V. Roo, D. A. Somer Ville, D. A. Lee, “Advance in Thermal Spraying”, ITSC86, 11th International Thermal Spraying Conference, Canada, (1986) pp.873~882

    [31] J. J. Park, M. Taya, “Design of Thermal Interface Material With High Thermal Conductivity and Measurement Apparatus”, Journal of Electronic Packaging, 128 (2006) 46~52.

    [32] R. Metselaar, “Surface Characterization of Chemically Treated Aluminum Nitride Powders”, Journal of the European Ceramic Society, 15(11) (1995) 1079~1085.

    [33] Y. Zhang, “Effect of Surfactant on Depressing The Hydrolysis Process for Aluminum Nitride Powder”, Materials Research Bulletin, 37 (2002) 2393 ~2400.

    [34] D. Hotza, O. Sahling, “Hydrophobing of Aluminium Nitride Powders”, Journal of Materials Science, 30(1) (1995) 127~132.

    [35] Y. M. Chiang, D. Birnie, W. D. Kingery, “Physical Ceramics-Principles for Ceramic Science and Engineering”, John Wiley & Sons, Inc., New York, (1997) pp.470~473.

    [36] N. T. Doyen, X. Grenier, M. Huger, D. S. Smith, D. Fournier, J. P. Roger, Thermal Conductivity of Alumina Inclusion/Glass Matrix Composite Materials: Local and Macroscopic Scales, Journal of the European Ceramic Society, 27 (2007) 2635~2640.

    [37] 吳孟奇、洪勝富、連振炘及龔正等譯,“半導體元件”,東華書局出版,台北市,(2001) pp.74~75, pp.217~221

    [38] http://www.ess.washington.edu/Space/AtmosElec/spriteinfo.html

    [39] http://www.smeter.net/daily-facts/4/fact25.php

    [40] O. Sarikaya, “Effect of Some Parameters on Microstructure and Hardness of Alumina Coatings Prepared by The Air Plasma Spraying Process”, Surface and Coatings Technology, 190 (2005) 388~393.

    [41] Y. Wu, K. L. Choy, “The Microstructure of Alumina Coatings Prepared by Aerosol Assisted Spray Deposition”, Surface and Coatings Technology, 180-181 (2004) 436~440.

    [42] 王三儀編,“精密量測”,科友圖書有限公司,台北市,(1988) pp.220

    QR CODE