簡易檢索 / 詳目顯示

研究生: 張紫嫺
Tzu-sian Chang
論文名稱: 太陽能再生電池之設計與探討
Investigation and Module Design of Solar Regenerated Battery
指導教授: 黃炳照
Bing-joe Hwang
朱瑾
Jinn P. Chu
口試委員: 蘇威年
Wei-nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 太陽能再生電池光觸媒電解液
外文關鍵詞: solar regenerated battery, photocatalyst, redox couple
相關次數: 點閱:200下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於開發以可直接轉換太陽光能為電能之儲能裝置:太陽能再生電池(Solar Regenerated Battery, SRB)。此研究中,成功開發出採用SRB系統之產品雛型裝置(prototype),並以經離子交換法合成的CuFeO2粉體作為其光陰極之可見光驅動光觸媒。本研究進一步探討兩種氧化還原對(redox couple)對該系統之影響。
    經由電化學測試,以銅氨錯合物與氯化銅為SRB系統之氧化還原對,可得出較高之電功率轉換效率,其值為5.01x10-4%。然而,以對苯醌與硫酸銅為SRB系統之氧化還原對,則有較高的光轉換效率,其值為2.7 x10-2 %。


    A novel solar-regenerated battery, SRB, capable of converting solar energy to electricity and storing it, was sucessfully developed in this work. The prototype of SRB system in the present research, where visble-light-driven photocatalyst CuFeO2 played a role of photocathode, stably worked under illumination. Besides, the influence of two redox couples, Cu(NH3)4Cl2/Cu(NH3)2Cl and quinone/hydroquinone, on the electrochemical performance of the SRB was investigated.
    The experimental results showed that a relatively high power efficiency, 5.01 x10-4%, was obtained as Cu(NH3)4Cl2/Cu(NH3)2Cl served as a redox couple for the SRB although the SRB system in which quinone/hydroquinone was the redox couple displayed a relatively high photon-to-current conversion efficiency, 2.7 x10-2%.

    中文摘要 I ABSTRACT〈英文摘要〉II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第1章 緒論 1 1.1.前言1 1.2.永續的再生能源-太陽能4 1.3.研究動機與目的7 1.4.太陽能再生電池(SOLAR-REGENERATED BATTERY,SRB)之開發 8 第2章 文獻回顧 10 2.1.太陽能電池 10 2.1.1.太陽能電池的基本原理 11 2.1.2.太陽能電池的材料與種類 13 2.2.光觸媒材料的簡介與應用 22 2.2.1.光觸媒的發展22 2.2.2.光電化學系統應用於太陽光能之轉換 24 2.2.3.銅鐵氧化物(CuFeO2)光觸媒 27 2.3.電解液之簡介 30 2.3.1.銅氨錯離子水溶液 30 2.3.2.Quinone水溶液 34 2.4.氧化還原液流電池(REDOX FLOW BATTERY,RFB)之簡介 36 第3章 實驗部分 40 3.1.實驗儀器 40 3.2.實驗藥品 42 3.3.實驗步驟 44 3.3.1.CuFeO2光觸媒之合成 44 3.3.2.電解液的配製 46 3.3.3.SRB的封裝與光電性質測試 48 3.4.儀器原理與材料鑑定 52 3.4.1.X射線繞射儀(XRD)52 3.4.2.X光能量色散圖譜分析(Energy Disperse Spectroscopy,EDS) 56 3.4.3.掃描式電子顯微鏡(SEM) 57 3.4.4.穿透式電子顯微鏡 (TEM) 61 3.4.5.四點探針(Four Point Probe)62 3.4.6.可見光-紅外線吸收光譜 (Visible-IR Absorbance)63 3.4.7.恆電位儀(Potentiostat)65 3.4.8.交流阻抗分析(AC-Impedance)67 第4章 結果與討論 72 4.1.光觸媒材料的鑑定與性質分析 72 4.1.1.銅鐵氧化物(CuFeO2)之結構特性72 4.1.2.銅鐵氧化物(CuFeO2)之表面型態分析 74 4.1.3.銅鐵氧化物(CuFeO2)之光吸收特性與電阻率77 4.2.光能源再生電池 (SOLAR-REGENERATED BATTERY, SRB)79 4.3.氯化銅氨[ CU(NH3)4CL2 ] 水溶液之光再生電池設計 80 4.3.1.氯化銅氨[ Cu(NH3)4Cl2 ] 水溶液之電化學分析 84 4.4.對苯醌 [1,4-BENZOQUINONE, C6H4O2]水溶液光再生電池設計 93 4.4.1. 對苯醌 [1,4-benzoquinone, C6H4O2]水溶液之電化學分析 97 第5章 總結 110 第6章 未來展望 112 第7章 參考文獻 113

    1.Cook, J., The correlation between concentration of CO2 and global temperature anomaly. http://www.skepticalscience.com/co2-temperature-correlation.htm, 2010.
    2.Technologies, H.s.E., Securing a Stable Electric Power Supply and Reducing CO2 Emissions. . HITACHI Inspire the Next, 2009.
    3.Administration, U.S.E.I., Primary energy production with renewable energy distribution. http://www.eia.gov/, 2010.
    4.REN21, Renewables 2011 Global Status Report. http://www.ren21.net/, 2011.
    5.Becquerel, E., Memoire sur les effets electriques produits sous l'influence des rayons solaires. Comptes rendus de l'Academie des Sciences, 1839. 9: p. 561-567.
    6.Wilson, G. and R. Hulstrom, Best Research-Cell Efficiency. National Center for Photovoltaics, 2012.
    7.Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238(5358): p. 37-38.
    8.Frank, S.N. and A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. Journal of Physical Chemistry, 1977. 81(15): p. 1484-1488.
    9.李曉平,徐寶琨,劉國範等, 功能材料. 1999. 30: p. 242~245.
    10.周祖飛,蔣偉川,劉維屏, 環境科學. 1997. 18: p. 35~37.
    11.孫奉玉,吳鳴,李文釧等, 催化學報. 1998. 19: p. 121~124.
    12.陳士夫,趙夢月,陶耀武等, 環境科學. 1996. 17: p. 33~35.
    13.陳耀武,趙孟月,陳士夫等, 催化學報. 1997. 18: p. 345~347.
    14.Zhang, Q., L. Gao, and J. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catalysis B: Environmental, 2000. 26(3): p. 207-215.
    15.K., O., et al., Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Chemical Society of Japan, 1985. 58: p. 2015-2022.
    16.Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
    17.Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
    18.Licht, S., Multiple band gap semiconductor/electrolyte solar energy conversion. Journal of Physical Chemistry B, 2001. 105(27): p. 6281-6294.
    19.Bensaid, S., et al., Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. ChemSusChem, 2012. 5: p. 500-521.
    20.Shannon, R.D., D.B. Rogers, and C.T. Prewitt, Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorganic Chemistry, 1971. 10(4): p. 713-718.
    21.Shannon, R.D. and P.S. Gumerman, Effect of covalence on interatomic distances in Cu+, Ag+, Tl+ and Pb2+ halides and chalcogenides. Journal of Inorganic and Nuclear Chemistry, 1976. 38(4): p. 699-703.
    22.Lalanne, M., et al., Synthesis and thermostructural studies of a CuFe1-xCrxO2 delafossite solid solution with 0 ≤ x ≤ 1. Inorganic Chemistry, 2009. 48(13): p. 6065-6071.
    23.Mugnier, E., A. Barnabe, and P. Tailhades, Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ionics, 2006. 177(5-6): p. 607-612.
    24.Younsi, M., et al., Visible light-induced hydrogen over CuFeO2 via S2O32- oxidation. Solar Energy Materials & Solar Cells, 2005. 78(5): p. 574-580.
    25.Omeiri, S., et al., Photoelectrochemical characterization of the delafossite CuFeO2: Application to removal of divalent metals ions. Journal of Electroanalytical Chemistry, 2008. 614(1-2): p. 31-40.
    26.Petrangolini, P., et al., Quinone/Hydroquinone redox reaction studied by EC-STM: Implication for molecular electronics Journal of the American Chemical Society, 2010.
    27.Tsai, Y.-M., 淺談電能儲存與液流電池(flow batteries)的最新發展. 2014.
    28.Alotto, P., M. Guarnieri, and F. Moro, Redox flow batteries for the storage of renewable energy: A review. Renewable and Sustainable Energy Reviews, 2014. 29(0): p. 325-335.
    29.B. Huskinson, M.P.M., C. Suh, S. Er, M.R. Gerhardt, C.J. and X.C. Galvin, A. Aspuru-Guzik, R.G. Gordon and M.J. Aziz, A metal-free organic-inorganic aqueous flow battery. Nature, 2014. 505: p. 195-198.
    30.Yan, N.F., G.R. Li, and X.P. Gao, Electroactive Organic Compounds as Anode-Active Materials for Solar Rechargeable Redox Flow Battery in Dual-Phase Electrolytes. Journal of The Electrochemical Society, 2014. 161(5): p. A736-A741.
    31.Kuthi, E.B., Crystalline silicon solar cells with selective emitter and the self-doping contact. 2004: p. 21-31.
    32.黃文慶, Research and Module Design of Visible-Light Photocatalyst Driven New Solar Cell System. National Taiwan University of Science and Technology - Chemical Engineering, 2012.

    QR CODE