簡易檢索 / 詳目顯示

研究生: 慕如甘
MURUGAN SUBRAMANI
論文名稱: AZ61镁合金微观SiC颗粒力学和疲劳性能的实验和数值分析
Experimental and numerical analysis of mechanical and fatigue behavior of magnesium alloy AZ61 with micro-SiC particles
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 李天錫
Ben Lee
丘群 教授
Chun Chiu
向四海
Su-Hai Hsiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 82
中文關鍵詞: AZ61镁合金碳化硅颗粒机械行为疲劳行为有限元法
外文關鍵詞: AZ61 magnesium alloy, Silicon carbide particles, Mechanical behavior, Fatigue behavior, Finite element method
相關次數: 點閱:242下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在目前的工作中,研究了不同重量百分比(0,1和2)的微SiCp增强AZ61镁合金的力学性能和疲劳行为,并通过重力铸造法在搅拌过程中制备。进行均匀化(T4)热处理以增加材料的延展性。从显微组织观察发现,在镁基体中加入SiCp显着降低了复合材料基体的晶粒尺寸。 SiCp的存在用于提高金属基复合材料(MMC)的硬度值。此外,添加SiCp增加了MMC的极限拉伸强度(UTS)和屈服拉伸强度(YTS)。均匀分布的SiCp及其与AZ61基体位错的相互作用是MMCs强度增加的主要来源。从疲劳试验结果来看,纯AZ61样品与SiCp增强MMC相比具有显着高的疲劳寿命,而增加AZ61基体中的SiCp含量显着降低了AZ61 / SiCp MMC的疲劳寿命。将得到的拉伸试验和疲劳试验结果与有限元模拟结果进行了对比,结果与实验结果具有良好的相关性。


In the present work, the mechanical properties and fatigue behaviors of AZ61 magnesium alloy reinforced with different weight percentages (0, 1 and 2) of micro-SiCp and fabricated by gravity casting method using the stirring process were investigated. Homogenization (T4) heat treatment was conducted to increase the ductility of the materials. From the microstructure observation, it was found that adding SiCp into the magnesium matrix significantly decreased the grain size of the matrix of the composites. The presence of SiCp was used to enhance the hardness value of metal matrix composites (MMCs). Furthermore, the addition of SiCp increased the ultimate tensile strength (UTS) and yield tensile strength (YTS) of the MMCs. The uniformly distributed SiCp and its interaction with the AZ61 matrix dislocations was the major source of increased strength in MMCs. From the fatigue test results, pure AZ61 samples were having significantly high fatigue life compare to the SiCp reinforced MMCs whilst increasing SiCp content into the AZ61 matrix decreased the fatigue life of AZ61/SiCp MMCs significantly. The obtained tensile test and fatigue test experimental results were compared with finite element simulation results and it showed good correlations with the experimental results.

ABSTRACT i ACKNOWLEDGEMENT vi Table of Contents vii List of Figure x List of tables xiii 1. Introduction 1 1.1. Composites materials 1 1.2. Metal matrix composites 2 1.3. Introduction of Magnesium 3 1.4. Magnesium alloy 4 1.5. Effects of alloying elements in magnesium 4 1.5.1. Effects of Aluminum 4 1.5.2. Effect of Zinc 4 1.5.3. Effect of Manganese 5 1.5.4. Influence of Iron 5 1.5.5. Influence of Silicon 5 1.5.6. Influence of Copper 5 1.6. Reinforcement 6 1.7. Thesis objectives 7 2. Literature review 8 2.1. Introduction 8 2.2. Literature of Mg alloy reactions with reinforcements on tensile properties 8 2.3. Fatigue overview 10 2.4. Fatigue life 11 2.5. Literature of Fatigue properties in magnesium alloys 14 2.6. Fabrication process 16 2.7. Summary of the literature 16 3. Experimental materials and procedures 17 3.1. Experimental materials 17 3.2. Flow chart of the process 18 3.3. Magnesium alloy MMCs fabrication process 19 3.4. Specimen preparation 22 3.5. T4 heat treatment process 23 3.6. Microstructure Test 25 3.6.1. Optical microscope 25 3.6.2. Mounting 26 3.6.3. Polishing 27 3.6.4. Etching 28 3.7. Microhardness Test 28 3.8. Tensile test 29 3.9. Fatigue Behavior Test 31 3.10. Failure criteria 33 4. Results and Discussions 34 4.1. Micro-structural analysis 34 4.2. Mechanical properties 38 4.2.1 Micro-hardness 38 4.2.2 Tensile test 39 4.2.2.1 Experimental analysis 39 4.2.2.2. Finite element method analysis 43 4.2.2.3. Simulation tensile test results of Mg alloy AZ61 matrix composite 45 4.2.2.4. Comparison of experimental and numerical analysis of tensile test results 48 4.2.2.5. Tensile fracture surface 50 4.2.3 Fatigue behavior test 51 4.2.3.1. Experimental analysis 51 4.2.3.2. Simulation fatigue test results of Mg alloy AZ61 matrix composite 53 4.2.3.3. Comparison of experimental and numerical analysis of fatigue test results 55 4.2.3.4. Fatigue fracture surface 57 5. Conclusion 62 References 64

[1] B. Anasori, Fabrication and Mechanical Properties of Magnesium Alloy Composites Reinforced with TiC and Ti 2 AlC Particles: Drexel University, 2014.
[2] S. U. Reddy, N. Srikanth, M. Gupta, and S. K. Sinha, "Enhancing the Properties of Magnesium using SiC Particulates in Sub‐micron Length Scale," Advanced engineering materials, vol. 6, pp. 957-964, 2004.
[3] K. U. Kainer, Metal matrix composites: custom-made materials for automotive and aerospace engineering: John Wiley & Sons, 2006.
[4] T. Clyne and P. Withers, An introduction to metal matrix composites: Cambridge university press, 1995.
[5] F. Guo, "Understanding the microstructure and fatigue behavior of magnesium alloys," University of Leicester, 2010.
[6] M. Gupta and S. N. M. Ling, Magnesium, magnesium alloys, and magnesium composites: John Wiley & Sons, 2011.
[7] A. R. Vaidya and J. J. Lewandowski, "Effects of SiCp size and volume fraction on the high cycle fatigue behavior of AZ91D magnesium alloy composites," Materials Science and Engineering: A, vol. 220, pp. 85-92, 1996.
[8] C. Godbole, "The Influence of Reinforcement on Microstructure, Hardness, Tensile Deformation, Cyclic Fatigue and Final Fracture behavior of two Magnesium Alloys," University of Akron, 2011.
[9] M. Esmaily, N. Mortazavi, J.-E. Svensson, M. Halvarsson, M. Wessén, L.-G. Johansson, et al., "A new semi-solid casting technique for fabricating SiC-reinforced Mg alloys matrix composites," Composites Part B: Engineering, vol. 94, pp. 176-189, 2016.
[10] J. Kaczmar, K. Pietrzak, and W. Włosiński, "The production and application of metal matrix composite materials," Journal of Materials Processing Technology, vol. 106, pp. 58-67, 2000.
[11] S. Huang, Y. Hwang, Y. Huang, and C. Huang, "Mechanical Properties Enhancement of Particle Reinforced Magnesium Matrix Composites Used for Hot Extruded Tubes," in Acta Physica Polonica A, 2015, pp. 1271-1273.
[12] X. Wang, N. Wang, L. Wang, X. Hu, K. Wu, Y. Wang, et al., "Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing," Materials & Design, vol. 57, pp. 638-645, 2014.
[13] A. Matin, F. F. Saniee, and H. R. Abedi, "Microstructure and mechanical properties of Mg/SiC and AZ80/SiC nano-composites fabricated through stir casting method," Materials Science and Engineering: A, vol. 625, pp. 81-88, 2015.
[14] S.-J. Huang and A. N. Ali, "Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite," Materials Science and Engineering: A, vol. 711, pp. 670-682, 2018.
[15] M. Oo, P. Ling, and M. Gupta, "Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique," Metallurgical and Materials Transactions A, vol. 31, pp. 1873-1881, 2000.
[16] B. M. Kumar, B. Basu, V. Murthy, and M. Gupta, "The role of tribochemistry on fretting wear of Mg–SiC particulate composites," Composites Part A: Applied Science and Manufacturing, vol. 36, pp. 13-23, 2005.
[17] H. Lin, M. Yang, H. Tang, and F. Pan, "Effect of minor Sc on the microstructure and mechanical properties of AZ91 Magnesium Alloy," Progress in Natural Science: Materials International, vol. 28, pp. 66-73, 2018.
[18] B. Pourbahari, M. Emamy, and H. Mirzadeh, "Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys," Progress in Natural Science: Materials International, vol. 27, pp. 228-235, 2017.
[19] I. Aatthisugan, A. R. Rose, and D. S. Jebadurai, "Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite," Journal of Magnesium and Alloys, vol. 5, pp. 20-25, 2017.
[20] X. Wang, W. Liu, X. Hu, and K. Wu, "Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling," Materials Science and Engineering: A, vol. 715, pp. 49-61, 2018.
[21] G. Rivers, "Cyclic fatigue behaviour of wrought AZ80 magnesium alloy from forged automotive wheel," 2011.
[22] M. Kuffova, "Fatigue endurance of magnesium alloys," in Magnesium Alloys-Design, Processing and Properties, ed: InTech, 2011.
[23] S. Suresh, Fatigue of materials: Cambridge university press, 1998.
[24] http://materials.iisc.ernet.in/~ramu/Fatigue.pdf
[25] U. Karr, A. Stich, and H. Mayer, "Very high cycle fatigue of wrought magnesium alloy AZ61," Procedia Structural Integrity, vol. 2, pp. 1047-1054, 2016.
[26] Z. Nan, S. Ishihara, A. McEvily, H. Shibata, and K. Komano, "On the sharp bend of the S–N curve and the crack propagation behavior of extruded magnesium alloy," Scripta materialia, vol. 56, pp. 649-652, 2007.
[27] A. Bag and W. Zhou, "Tensile and fatigue behavior of AZ91D magnesium alloy," Journal of materials science letters, vol. 20, pp. 457-459, 2001.
[28] D. Goodenberger and R. Stephens, "Fatigue of AZ91E-T6 cast magnesium alloy," Journal of Engineering Materials and Technology, vol. 115, pp. 391-397, 1993.
[29] Z. Sajuri, Y. Miyashita, and Y. Mutoh, "Effects of humidity and temperature on the fatigue behaviour of an extruded AZ61 magnesium alloy," Fatigue & Fracture of Engineering Materials & Structures, vol. 28, pp. 373-379, 2005.
[30] M. S. Bhuiyan, Y. Mutoh, T. Murai, and S. Iwakami, "Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments," International Journal of Fatigue, vol. 30, pp. 1756-1765, 2008.
[31] K. Shiozawa, J. Kitajima, T. Kaminashi, T. Murai, and T. Takahashi, "Low-cycle fatigue deformation behavior and evaluation of fatigue life on extruded magnesium alloys," Procedia Engineering, vol. 10, pp. 1244-1249, 2011.
[32] S. Hasegawa, Y. Tsuchida, H. Yano, and M. Matsui, "Evaluation of low cycle fatigue life in AZ31 magnesium alloy," International Journal of Fatigue, vol. 29, pp. 1839-1845, 2007.
[33] S. Fintová and L. Kunz, "Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation," Journal of the mechanical behavior of biomedical materials, vol. 42, pp. 219-228, 2015.
[34] A. Němcová, P. Skeldon, G. Thompson, S. Morse, J. Čížek, and B. Pacal, "Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy," Corrosion Science, vol. 82, pp. 58-66, 2014.
[35] J. Szusta, "Fatigue life of metallic materials under uniaxial low-cycle loading at elevated temperature," International Journal of Fatigue, 2018.
[36] S. Karparvarfard, S. Shaha, S. Behravesh, H. Jahed, and B. Williams, "Fatigue characteristics and modeling of cast and cast-forged ZK60 magnesium alloy," International Journal of Fatigue, 2018.
[37] J. Hashim, L. Looney, and M. Hashmi, "Metal matrix composites: production by the stir casting method," Journal of Materials Processing Technology, vol. 92, pp. 1-7, 1999.
[38] S. Huang, C. Li, and K. Yan, "Particle reinforcement of magnesium composites SiCp/AZ80 and their mechanical properties after heat treatment," Metal Mater, vol. 51, pp. 45-52, 2013.
[39] A. Standard, "E8," Standard Test Methods for Tension Testing of Metallic Materials," Annual book of ASTM standards, vol. 3, pp. 57-72, 2004.
[40] A. J. Sterling, B. Torries, N. Shamsaei, S. M. Thompson, and S. R. Daniewicz, "MICROSTRUCTURAL SENSITIVE FATIGUE MODELING OF ADDITIVELY MANUFACTURED TI-6AL-4V."
[41] Kıranlı, E., Determination of material constitutive equation of a biomedical grade Ti6AI4V
alloy for cross-wedge rolling. 2009, Izmir institute of technology.
[42] K. Gopi, H. S. Nayaka, and S. Sahu, "Investigation of microstructure and mechanical properties of ECAP-processed AM series magnesium alloy," Journal of Materials Engineering and Performance, vol. 25, pp. 3737-3745, 2016.
[43] DeMarco, J.P., Mechanical Characterization And Numerical Simulation Of A Light-weight Aluminum A359 Metal-matrix Composite. 2011.
[44] A. Němcová, J. Zapletal, M. Juliš, and T. Podrábský, "Cyclic fatigue resistance of AZ91 magnesium alloy," Materials Engineering, vol. 16, p. 5, 2009.
[45] D. Myriounis and S. Hasan, "Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions," 2011.

QR CODE