簡易檢索 / 詳目顯示

研究生: 蔡柏祥
Po-Hsiang Tsai
論文名稱: 使用自然光為泵激光元的光纖放大器之研究與探討
Optical Amplifier Investigation Using Solar Light as A Pumping Source
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 李志堅
Chih-Chien Lee
單秋成
Chow-Shing Shin
游易霖
Yi-Lin Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 太陽能泵激光纖耦合太陽光耦合光纖準直器太陽光模擬器光纖放大器
外文關鍵詞: Solar pump, Fiber coupling, Fiber collimator, Solar simulator
相關次數: 點閱:359下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在發展出一種能直接將太陽光收進單模光纖中使用的裝置,並以增加收光效率為目標,主要分成三大部分,先根據理論資料與過去實際天氣資料作為評估,了解實際戶外太陽光分別在台北與清奈各季節的日照能量及使用太陽能的最佳時機,並針對現有太陽光模擬器標準與規範做簡單介紹,了解其與自然太陽光差異。第二部分則為實際實驗,首先利用太陽光模擬器量測元件組合討論其耦合效果,得到使用大光束準直器輔助光纖與耦合能將功率密度提升到552.4倍。本論文最後以透鏡組與大光束準直器及光纖實際到戶外進行多次量測,其中結構與天氣影響,以0.01227平方公尺的接收面積接收到光纖中最高的功率為4.315×〖10〗^(-3) mW,即功率密度提升了2276倍。最後部分則是利用Tracepro軟體根據不同的耦光元件進行耦合光的模擬,分別量測了透鏡與漸變折射率透鏡耦合光纖的效果,最後使用了透鏡與大光束準直器組合而成的架構將光源的功率密度提高了16570倍,並模擬裝置在戶外整年度每日正午12點的的接收效率,了解此架構在仰角為40.6∘以內都至少能接收到太陽光,且功率較高的區間為5月底到7月中,都在0.6 mW以上。接著以7月11日台北日光為光源,以不同的天氣狀況模擬收光情形可以得到真空時可以收進光纖內的功率為0.7438 mW;晴天時為0.5619 mW;部分有雲天為0.2158 mW,也因此可以計算要在各天氣狀況下都能有1 mW的功率至少要將面積提升4.6倍。


This thesis aims to develop a device that can directly transform sunlight into a single-mode fiber, and increase the light-receiving efficiency. We mainly divided the experiment into three parts. Firstly, we understand the optimal time for sun exposure and the best time for solar energy transformation in Taipei and Chennai based on the theoretical data and the data of actual weather. The second part is to use the Tracepro software to simulate the coupling light according to different coupling elements, and measure the effect of the lens and the gradient index lens coupling with fiber respectively. Finally, the combination of the lens and the large beam collimator used in the experiment increases the power density of the light source by 16570 times. By simulating the receiving efficiency of the system every day in the whole year is simulated, it is understood that the architecture can receive at least sunlight at an elevation angle of 40.6 degree. From the end of May to the middle of July, both power are above 0.6 mW. Next, with the sunlight of Taipei on July 11 as the light source, the light collection simulated in different weather conditions can receive the power of 0.7438 mW into the fiber at vacuum condition, 0.5619 mW in the sunny day, and 0.2158 mW in the partly cloudy weather. It can be calculated that the power of 1mW can increase at least 4.6 times in all the weather conditions. The last part is the actual experiment. The coupling effect of the solar simulator is discussed, and the power density increases to 552.4 times by using the large beam collimator auxiliary fiber and coupling energy. At the end of the paper, the lens group, the large beam collimator and the optical fiber are actually measured outdoors, under the influence of the structure and weather, the highest power received in the fiber with a receiving area of 0.01227 square meters is 4.315 mW, and the power density increases by 2276 times.

摘要 i Abstract ii 致謝 iv 目錄 v 圖表目錄 ix 第一章、緒論 1 1.1 前言 1 1.2 研究動機及方法 2 1.3 文獻回顧 3 1.4 論文架構 5 第二章、光源分析 7 2.1 自然太陽光 7 2.1.1 太陽光計算 7 2.1.2 實際日照分析 9 2.2 太陽光模擬器 12 2.2.1 規範 12 2.2.2 種類 16 第三章、元件與儀器原理介紹 17 3.1 光纖 17 3.1.1 色散 19 3.1.2 光纖準直器 20 3.1.3 漸變折射率光纖 21 3.1.4 高斯光束 23 3.1.5 模場 25 3.2 透鏡 26 3.2.1 高斯光學 28 3.2.2 縮束架構 29 3.2.3 像差 30 3.3 離軸拋物面鏡 31 3.4 摻鉺光纖放大器 32 3.4.1 放大原理 33 3.4.2 增益 36 3.4.3 雜訊指數 37 3.4.4 轉換效率 37 3.5 照度計 38 第四章、太陽光耦合光纖實作 39 4.1 以太陽光模擬器為光源的實驗 39 4.1.1 透鏡實際實驗 40 4.1.2 準直器耦合特性量測 41 4.1.3 LBC與透鏡組合特性量測 43 4.1.4 透過離軸拋物面鏡的收光特性量測 44 4.2 戶外太陽光收光實驗 45 4.3 摻鉺光纖放大器討論 46 4.4 實驗結果與討論 49 第五章、耦合光模擬 51 5.1 元件特性模擬 51 5.1.1 光纖特性模擬 52 5.1.2 透鏡參數模擬 53 5.1.3 準直器設計模擬 55 5.2 元組件特性模擬 56 5.2.1 元件耦合光纖模擬 56 5.2.2 縮束架構模擬 59 5.3 時間對收光效率影響 61 5.3.1 整年正午收光模擬 61 5.3.2 單日收光模擬 63 5.4 天氣狀況對收光效果影響 65 5.4.1 理想空氣條件 66 5.4.2 晴天 67 5.4.3 部分有雲 68 5.5 使用太陽光泵激的EDFA結構模擬 70 5.6 本章小節 73 第六章、結論與未來展望 74 6.1 結論 74 6.2 未來展望 75 參考文獻 76 附錄 80

[1] P. D. Reusswig, S. Nechayev, J. M. Scherer, G. W. Hwang, M. G. Bawendi, M. A. Baldo and C. Rotschild, “A Path to Practical Solar Pumped Lasers via Radiative Energy Transfer” Scientific Reports 05 Oct. 2015 : 14758
[2] 林清富,光學與光電導論,台北,五南出版社,9月,2012
[3] G. Keiser, FTTX Concepts and Applications,1st,2006
[4] 關哲,”太陽光泵浦激光器側面泵浦效率的提高”,強激光與粒子束,第26 卷,2014
[5] C. G. Young, “A sun-pumped CW one-watt laser,” Applied Optics, vol. 5, pp.993-997, 1966
[6] M. Weksler, J. Shwartz, “Solar-pumped solid-state laser,” IEEE Journal of Quantum Electronics, vol. 24, pp. 1222-1228, 1988
[7] O. Tomomasa, H. D. Thanh, Y. Takenaka, N. Marukawa, T. Yabe, Y. Okamoto, “120W Solar-pumped laser with record-high collection efficiency,” Conference on Lasers and Electro-Optics/Pacific Rim, Optical Society of America, 2013
[8] 陳頤承、郭昭顯、陳俊亨,”太陽電池量測技術” 工業材料雜誌 258期
[9] 沈輝、曾祖勤,太陽能光電技術,五南出版社,2008
[10] 施仁親、陳震偉、吳登峻,“太陽光模擬器要求與新型LED太陽光模擬器簡介”,光連雙月刊,No.9,3月,2011
[11] K. A. Mazzio and C.K. Luscombe, ”The Future of Organic Photovoltaics”, Chemical Society Reviews, Sep 2014
[12] Weatherspark:
https://weatherspark.com/
[13] R. M. Gagliardi, and S. Karp, Optical Communications, 2nd ed, New York, John Wiley, 1995
[14] 鄒永祥 “光準直器-精密光學元件的新要角” 光連雙月刊,第38期,3月 2002
[15] W. L. Emkey and C. Jack, “Analysis and Evaluation of Graded-Index Fiber Lenses”, Journal of Lightwave Technology, pp 1156-1164,198
[16] T. Suzuki, N. Tsumoto and Y. Ohishi, “Solar Pumped Lasing of Nd-doped ZBLAN Double-clad Fiber with Silica Fiber Bragg Gratings” Conference on Lasers and Electro-Optics (CLEO) ,USA, 5 June -10 2016
[17] S. O. Kasap,”Optoelectronics and Photonic: Principles and Practices”, Pearson Education International ,pp. 1-13,2001
[18] 呂婉倩,”160 Gbits/s 雙向分波多工之無線光通訊設計與系統傳輸”,國立臺灣科技大學碩士論文,2011年 6月
[19] M.R. Vastag, “Mode Field Diameter and Effective Area.” Corning White Paper 2 ,2001
[20] X. F. Zhou, Z. Chen, H. H. Chen, J Li, J. Hou, “Mode Field Adaptation Between Single-Mode Fiber and Large Mode Area Fiber by Thermally Expanded Core Technique” Optics & Laser Technology, vol. 47, pp. 72-75, April ,2013
[21] Thorlabs’ N-BK7 Plano-convex Lens:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=112&pn=LA1050
[22] B. Tatian, "Fitting Refractive-Index Data with the Sellmeier Dispersion Formula," pp 4477-4485, Applied Optics,1984
[23] 耿繼業、何建娃,幾何光學,全華科技圖書股份有限公司,臺北,第11章,2009
[24] L. Keigo, “Elements of Photonics ”,2nd ed.New York: Wiley-Interscience, 2002
[25] P. J. Littlefair, PhD “The Luminous Efficacy of Daylightv: A Review “, Lighting Research & Technology 1st Vol 17, Issue 4, pp. 162 – 182 ,Dec ,1985
[26] Corning’s SMF-28® Ultra Optical Fibers:
https://www.corning.com/tw/zh_tw/products/communication-networks/products/fiber/smf-28e-.html
[27] Go! Foton ‘s selfoc-micro-lens:
http://www.gofoton.com/product/selfoc-micro-lens/
[28] Newport’s 94043A:
https://www.newport.com/f/class-aaa-solar-simulators?q=:ranking-desc:npCategory:solar-simulators:suppress:false:solar-simulators-lampWattage:450%20W
[29] A. Dhokar1 and S. D. Deshmukh, “Overview Of EDFA for the Efficient Performance Analysis” IOSR Journal of Engineering ,Vol. 04, No. 03, pp. 1-8, Mar 2014
[30] P. Schiopu and F. Vasile , “The EDFA Performance with Gain Versus Pump Power” ,Proceedings of the International Semiconductor Conference, Vol. 1. IEEE, 2004.
[31] F. A. Martinsen, B. K. Smeltzer, M. Nord, T. Hawkins, J. Ballato and U. J. Gibson, “Silicon-Core Glass Fibers as Microwire Radial-Junction Solar Cells”, Scientific Reports vol 4, 2014
[32] D. B. Bickler, “The Calibration of a Solar Simulator”, Proceedings of the ASME Solar Energy Applications Committee Winter Annual Meeting, 1962
[33] M. D. Feit and J. A. Fleck, Light Propagation in Graded-Index Optical Fibers” Applied optics, pp 3990-3998,1978
[34] J. C. PALAIS,” Fiber Coupling Using Graded-Index Rod Lenses”, Applied Optics, 1980
[35] D. U. Rufino and C. R. Alejandro,” Conic Constant and Paraxial Radius of Curvature Measurements for Conic Surfaces”, 1986 Optical Society of America, 30 Apr ,1986.
[36] X. Mao, S.C. Lin, M. I. Lapsley, J.J. Shi, B. K. Juluria and J. Huang “Tunable Liquid Gradient Refractive Index (L-GRIN) Lens with Two Degrees of Freedom”, The Royal Society of Chemistry, pp 2050–2058, 2009
[37] Thorlab’s Large-beam Collimator:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=11585&pn=C80APC-B

無法下載圖示 全文公開日期 2024/01/11 (校內網路)
全文公開日期 2029/01/11 (校外網路)
全文公開日期 2029/01/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE