簡易檢索 / 詳目顯示

研究生: 陳柏榮
Po-Lung Chen
論文名稱: 漿體之質與量對黃氏富勒緻密混凝土耐久性影響之研究
The Study of Effects of Quality and Quantity of Binder on the Durability of Concrete Design Hwang-Fuller’s Densified Mixture Design Algorithm
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 沈得縣
De-Xian Shen
王和源
He-Yuan Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 264
中文關鍵詞: 黃氏富勒緻密配比設計法緻密配比法混凝土耐久性漿量厚度漿質用量Fuller’s curve
外文關鍵詞: Hwang-Fuller’s Densified Mixture Design Algorit, Densified Mixture Design Algorithm (DMDA), Durability of Concrete, Coating Thickness, Quality of Binder, Fuller’s curve
相關次數: 點閱:329下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

漿體的品質,是耐久性能最重要的控制因子。改變粒料表面漿體的裹漿質與裹漿量,無疑會對混凝土的耐久性造成極大影響。本研究探討改變漿體之質(W/B=0.2,0.28和0.36)與量(t=5,15和25μm),在固定水固比(W/S≦0.09)條件下,控制體積穩定性為訴求,做為確保水泥水化與確保長期品質之限制。混凝土配比設計依據黃氏富勒緻密混凝土與傳統ACI設計法二種方式,並比較兩者耐久性指標之差異。研究結果顯示黃氏富勒緻密配比設計在相同漿質(W/B固定)下強度值優於ACI設計法約1.1倍以上、水泥強度效益1.67倍以上、超音波速1.10倍以上、電阻值5倍以上、動彈性模數1.04倍以上,低於ACI設計法吸水率0.37倍以上、乾縮量、硫酸鹽反應中亦較有穩定的重量變化、氯離子電滲與氯離子擴散試驗中顯示有較佳的抵抗氯離子滲透能力,而鹼骨材反應顯示無反應現象。


The quality of the paste is the most important factor controlling the durability of concrete. Change the quality and quantity of the coating thickness of cement paste on the surface of grain material will undoubtedly bring the great influence to the durability of concrete. This study uses different water-to-binder ratio (w/b = 0.20, 0.28, 0.36) and coating thickness (t = 5, 15, 25 μm), and keep water-to-solid ratio lower than 0.09 (w/s ≦ 0.09) to investigate the cement hydration in its long-term quality. The mix proportions of concrete were designed with two methods: Hwang-Fuller’s Densified Mixture Design Algorithm (HFDMDA) and ACI, then the durability of two kinds of concrete were compared. The result shows that HFDMDA concrete when compared with ACI concrete is same w/b ratio may give the better result: increase compressive strength by 1.1 times, efficiency of cement by 1.67 times, ultrasonic pulse velocity by 1.10 times, electrical resistivity by 5 times, and dynamic modulus elasticity by 1.04 times; and decrease rate of water absorption by 0.37 times and percentage of drying shrinkage. In Alkali Aggregate Reaction test, HFDMDA concrete possesses steady weight that changes while reacting during the immersion in sulphate; which means that HFDMDA concrete has better resistance and permeability to chloride ion.

中文摘要 Ⅰ ABSTRACT Ⅱ 誌謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅷ 圖目錄 Ⅸ 變數表 Ⅹ 符號及試體編號說明 ⅩⅠⅩ 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 研究範圍與限制 3 1-4 研究流程 3 第二章 文獻回顧 5 2-1 混凝土配比設計 5 2-1-1 ACI配比設計法 5 2-1-2 富勒曲線粒料堆積模式 6 2-1-3 黃氏緻密混凝土配比設計法 7 2-1-4 黃氏富勒緻密混凝土配比設計法 9 2-2 黃氏富勒緻密混凝土之性質與行為 22 2-2-1 黃氏富勒緻密混凝土之工作性 22 2-2-2 黃氏富勒緻密混凝土之硬固性質 23 2-2-3 黃氏富勒緻密混凝土之耐久性 23 2-3 氯離子對鋼筋混凝土之影響與機理 24 2-3-1 氯離子對鋼筋腐蝕之機理 24 2-3-2 氯離子對混凝土之影響 25 2-4 鹼骨材反應對混凝土之影響與機理 27 2-5 中性化作用對混凝土之影響與機理 28 第三章 試驗規劃 38 3-1 試驗規劃 38 3-2 試驗材料 38 3-2-1 水泥 38 3-2-2 粗、細粒料 38 3-2-3 爐石粉 39 3-2-4 飛灰 39 3-2-5 矽灰 39 3-2-6 強塑劑 39 3-2-7 拌和水 40 3-3 試驗變數及項目 40 3-3-1 試驗變數 40 3-3-2 試驗項目 40 3-4 配比設計 41 3-4-1 ACI配比設計法流程與方式 41 3-4-2 黃氏富勒緻密混凝土配比設計流程與方式 45 3-4-3 黃氏富勒緻密混凝土配比設計特色 51 3-5 試驗方式及設備 53 3-5-1 材料基本試驗 53 3-5-2 新拌混凝土試驗 55 3-5-3 硬固混凝土試驗 56 3-5-4 混凝土耐久性試驗 57 3-5-5 微觀觀測 63 3-5-6 拌和及養護設備 64 第四章 試驗結果與分析 82 4-1 富勒曲線粒料堆積分析 82 4-2 黃氏富勒緻密混凝土新拌性質 84 4-2-1 工作性 84 4-2-2 單位重 87 4-3 黃氏富勒緻密混凝土硬固性質 89 4-3-1 抗壓強度 90 4-3-2 水泥強度效益 94 4-3-3 超音波 97 4-3-4 表面電阻 100 4-3-5 動彈性模數 103 4-3-6 吸水率 106 4-4 黃氏富勒緻密混凝土耐久性質 109 4-4-1 乾縮 109 4-4-2 氯離子電滲 111 4-4-3 硫酸鹽侵蝕 116 4-4-4 氯離子擴散 119 4-4-5 鹼骨材反應 121 4-4-6 中性化 123 4-5 黃氏富勒緻密混凝土微觀結構 126 4-6 黃氏富勒緻密混凝土性質綜合討論分析 127 第五章 結論與建議 257 5-1 結論 257 5-2 建議 260 參考文獻 261

1、黃兆龍,『高性能混凝土理論與實務』,詹氏書局,台北,2003。
2、黃兆龍,『混凝土性質與行為』,詹氏書局,台北,2002。
3、陳俊村,『黃式富勒緻密配比設計法於鋼纖維混凝土枕材料設計應用之研究』,碩士論文,國立台灣科技大學營建工程研究所,台北,2006。
4、葉叔通,『以理想級配曲線估算粒料緻密混合比及飛灰水泥漿包裹厚度評估混凝土性質之探討』,碩士論文,國立台灣科技大學營建工程研究所,台北,2005。
5、C.F. Mora, A.K.H. Kwan, H.C. Chan, 『Particle size distribution analysis of coarse aggregate using digital image processing』, Cem Con Res,28(6),1998,pp.921~933.
6、A.K.H. dawn, C.F. Mora, and H.C. Chan, 『particle shape analysis of coarse aggregate using digital image processing』, Cem Con Res,29(9),1999,pp.1403~1410.
7、C.F. Mora, A.K.H. Kwan,and H.C. Chan, 『Sphereicity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing』, Cem Con Res, 2000,30(3), pp.351~358.
8、張建智,『以粒料表面積及裹漿厚度模式設計高性能混凝土並探討其工程性質』,碩士論文,國立台灣科技大學營建工程研究所,台北,2005。
9、黃兆龍,湛淵源,盧雪卿,『水固比(W/S)對混凝土體積穩定性的影響』,中國土木水利學刊,第十二卷,第四期,pp.831~838, 2000。
10、黃兆龍,盧雪卿,『漿量及水量對混凝土體積穩定性的影響』,中國土木水利學刊,第十二卷,第三期,pp.621~626, 2000。
11、C.L. Hwang, “Dry Shrinkage and Microstructure of Hydrated Cement Paste”, University of Illinois,1983.
12、Kouloumbi, N., Batis, G., and Pantazopoulou, P.,『Efficiency of Natu- ral Greek Pozzolan in Chloride-Induced Corrosion of Steel Reinforce-ment』Cement ,Concrete Aggregates, Vol. 17,No. 1,pp. 18-25, 1995.
13、Mehta, P.K. and Monteiro, P.J.M., Concrete: Structure, Properties, and Materials, Second Edition, Prentice Hall, New Jersey, 19993.
14、施憲谷,『台灣地區鹼-骨材反應迅速判定法之評估研究』,碩士論文,國立台灣成功大學土木工程研究所,台南,2004。
15、林梓凇,『以迅速法對鹼-骨材反應確認之研究』,碩士論文,國立台灣成功大學土木工程研究所,台南,2004。
16、Gillott, J. E., 『Alkali-Aggregate Reaction in Concrete, Engineering Geology』, Vo1.9,pp.303-326,(1975).
17、Stanton, T.E., 『The expansion of concrete through reaction between cement and concrete, Proceeding American Society of Civil Engineers』, Vol.66,pp.1781-1811,(1940).
18、紀茂傑,『混凝土耐久性影響因素及評估方法之研究』,博士論文,國立台灣海洋大學材料工程研究所,台北,2002。
19、Bier, T.,『Influence of Type of Cement and Curing on Carbonation Progress and Pore Structure of Hydraterd Cement Paste』in MRS Symp. Proc. Vol. 85,Microstructural Development during Hydration if Cement,pp.123-134,1987.
20、Ngala, V.T. and Page, C.L.,『Effects of Carbonation on Pore Structure and Diffusional Properties of Hydrated Portland Cement』Cement and Concrete Research, Vol. 27,No.7,pp.995-1007,1997.
21、Ismail, N. et al,『Effects of Carbonation on Microbial Corrosion of Concretes』,Construction Management and Engineering, No.474,pp.133-138,1993.
22、吳漢儒,『黃式富勒緻密配比設計法應用於高性能再生粒料混凝土性質之研究』,碩士論文,國立台灣科技大學營建工程研究所,台北,2006。
23、Stewart, M. G. and Rosowsky, D. V., 『Structural Safety and Serviceability of Concrete Bridges Subject to Corrosion』, Journal of Infrastructure Systems, Vol.4, No.4, pp.146-155, 1998.
24、Stewart, M. G. and Val, D. V., 『Multiple Limit States and Expected Failure Costs for Deteriorating Reinforced Concrete Bridges』, Journal of Bridge Engineering, Vol.8, No.6, pp.405 -415, 2003.

25、張峻傑,『以加速氯離子穿透試驗評估混凝土耐久性之研究』,碩士論文,國立台灣海洋大學材料工程研究所,基隆,2003。
26、廖展章,『以加速氯離子穿透試驗評估礦物掺料及用量之混凝土耐久性之研究』,碩士論文,國立台灣海洋大學材料工程研究所,基隆,2004。
27、林致緯,『以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中氯離子擴散行為』,碩士論文,國立台灣海洋大學材料工程研究所,基隆,2003。
28、顏旭堯,『以不同試驗法探討添加卜作嵐材料對混凝土微觀特性之研究』,碩士論文,國立台灣海洋大學材料工程研究所,基隆,2003。
29、楊仁杰,『混凝土中鋼筋腐蝕預測模型之研究』,碩士論文,國立台灣海洋大學河海工程學系,基隆,2004。
30、劉俊杰,『黃氏緻密配比設計法於鋼纖維混凝土枕材料設計應用之研究』,博士論文,國立台灣工業技術學院工程技術研究所,台北,1995。
31、劉信宏,『超音波在混凝土中波傳行為之探討與應用』,碩士論文,私立中圓大學土木工程研究所,中壢,1995。
32、O.Bjontegaard, T.A. Hammer and E.J. Sellevold, “Cracking in HPC before Setting Concrete.” , International Symposium on High-Performance and Reactive Power Concretes, Vol.1,pp1-16(1998).
33、Hansson, I.L.H and C.M. Hansson, 『Electrical Receptivity Measurements of Portland Cement and Materials』, Cement and Concrete Research, Vol.13, pp675-683(1983).
34、Cavalier, P.G. and P.R. Vassie, 『Investigation and Repair of Reinforcemrnt Corrosion in a Bridge Deck』,Proc. Inst. Of Civil Engineers, Vol.70, Part1, August, 1981, PP.460-480.
35、M. Cadtellote, C. Andrade, and C, Alonso, 『Modeling of the processes during Steady-state migration test: Quantification of transference numbers』, Materials and Structures, V.32, No.1, PP.180-186,1999.
36、K.O. Ampadu, K.Torii, M. Kawamura,『Beneficial effect of fly ash on chloride diffusivity of hardened cement paste』,Cement and Concrete Research, Vol.29,1999, pp.585-590.
37、朱安民,混凝土碳化與鋼筋混凝土耐久性,混凝土,第6期,中國,1992年。
38、Melchers R.E., 『Mathematical Modeling of the Diffusion Controlled Phase in Marine Immersion Corrosion of Mild Steel,』Corrosion Science, Vol.45, 2003, pp.923-940.

無法下載圖示 全文公開日期 2012/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE