簡易檢索 / 詳目顯示

研究生: 呂東諭
Dong-Yu Lu
論文名稱: 三階層飛馳電容式轉換器
Three Level Flying Capacitor Converter
指導教授: 林景源
Jing-Yuan Lin
口試委員: 張佑丞
Chen-Chang Yu
林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
王建民
Jian-Min Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 49
中文關鍵詞: 三階層飛馳電容式轉換器三階層飛馳電容式轉換器補償控制飛馳電容電壓控制飛馳電容預充
外文關鍵詞: Three Level Flying Capacitor Converter, Three Level Flying Capacitor Converter compensating controls, Voltage balance control of flying capacitor, Pre-charge method of flying capacitor
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來許多國家投入智慧電網發展,以及各式新興產業都需要
    倚賴智慧電網,如電動車、再生能源、大型儲能之應用都是在智慧
    電網架構下的產業,而微電網技術為智慧電網的一環,透過微電網
    整合分散式的再生能源,依據用戶的負載進行協調運轉,能夠使電
    網的整體運作更有效率,而微電網在智慧電網技術中主要關鍵技術
    為高壓直流輸電網,由於高壓直流輸電網常有併網之需求,對於合
    併各個電網系統可透過功率級硬體迴路應用驗證,因此高輸入電壓
    之多階層轉換器即適合此場合應用。
    本論文提出一適用於高輸入電壓場合之三階層飛馳電容式轉換
    器,使用此架構主要是用以透過飛馳電容來使得功率開關元件應力
    降為輸入電壓的一半,而以藉此可選擇較低耐壓之功率開關,使元
    件成本也隨之降低,在電感電流上具有等效兩倍開關頻率的特點,
    由此即可減少輸出電感及輸出電容的大小,獲取更高的功率密度。
    本論文為穩定飛馳電容電壓加入電壓平衡控制及在開機前針對飛馳
    電容預充之電路,使得開關上電壓穩定於 0.5Vdc,並設計補償器控
    制輸出回授,探討輸出回授與飛馳電容電壓控制之關係,利用計算
    及模擬來驗證系統之設計結果,使實作之系統可以達到開關切換頻
    率為 200 kHz,輸出為 500 Hz 之具有 650 Vdc+347 Vrms規格之三階層
    飛馳電容式轉換器。


    In recent years, many countries have invested in the development of
    smart grids, and various emerging industries need to rely on smart grids,
    such as electric vehicles, renewable energy, and large-scale energy storage.
    The first link is to integrate distributed renewable energy through the microgrid and coordinate the operation according to the user's load, which
    can make the overall operation of the power grid more efficient. The power
    transmission grid often needs to be connected to the grid. For the integration of various grid systems, it can be verified through the application of
    the power stage hardware circuit, so the multi-level converter with high
    input voltage is suitable for this application.
    This theies proposes a three-level flying capacitor converter suitable
    for high input voltage applications. This structure is mainly used to reduce
    the stress of the power switching element to half of the input voltage
    through the flying capacitor, so as to select a lower The voltage-resistant
    power switch reduces the cost of components, and has the characteristic of
    twice the switching frequency of the inductor current, which can reduce
    the size of the output inductor and output capacitor, and obtain higher
    power density. In this paper, a circuit of voltage balance control and precharging of the flying capacitor is added to stabilize the voltage of the flying capacitor, so that the voltage on the switch is stable at 0.5Vdc, and the
    compensator is designed to control the output feedback, and the relationship between the output feedback and the voltage control of the flying capacitor is discussed. Calculation and simulation are carried out to verify
    the design results of the system, so that the implemented system can
    achieve a three-level flying capacitor converter with a switching frequency
    of 200 kHz and an output of 500 Hz with a specification of 650Vdc+347
    Vrms.

    摘要 Abstract 致謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 章節大綱 第二章 多階層轉換器電路架構介紹 2.1 降壓轉換器 2.2 三階層轉換器 2.3 三階層飛馳電容式轉換器電路架構分析 2.3.1 工作週期>50% 2.3.2 工作週期<50% 第三章三階層飛馳電容式轉換器控制 3.1 飛馳電容穩壓方式 3.1.1 理想飛馳電容電壓證明 3.1.2 平衡控制與輸出波形之關係 3.2 飛馳電容預充方法 3.3 小訊號分析 3.4 回授補償設計選擇 第四章 軟硬體電路設計 4.1 硬體電路設計 4.1.1 輸出電感設計 4.1.2 輸出電容設計 4.1.3 飛馳電容設計 4.2 補償器參數設計 4.3 軟體電路設計 4.3.1 數位信號處理器介紹 4.3.2 ePWM模組 4.3.3 軟體流程介紹 第五章 電路模擬與實驗結果 5.1 模擬結果 5.1.1 三階層飛馳電容式轉換器預充模擬驗證 5.1.2 三階層飛馳電容式轉換器飛馳電容平衡模擬驗證 5.1.3 三階層飛馳電容式轉換器閉迴路系統模擬驗證 5.2 三相模擬 5.3 實驗結果 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] D.V. Hertem and M. Ghandhari, “Multi-terminal VSC HVDC for the
    European supergrid: Obstacles,” Renewable and Sustainable Energy
    Reviews, vol. 14, no. 9, pp. 3156-3163, 2010.
    [2] Y. Wamg, Y. B. Zhang, D. L. Zhao and H. Huang, “The Technical
    Trends and Suggestions on the Development of DC Power Grid,” in
    Proc. International Conference on Power System Technology,2014,
    pp.1975-1979.
    [3] C. S. Edrington, M. Steurer, J. Langston, T. El-Mezyani and K. Schoder, "Role of Power Hardware in the Loop in Modeling and Simulation for Experimentation in Power and Energy Systems," in Proceedings of the IEEE, vol. 103, no. 12, pp. 2401-2409, Dec. 2015.
    [4] Abourida, Simon, Christian Dufour, and Jean Bélanger. "Real-Time and Hardware-In-The-Loop Simulation of Electric Drives and Power Electronics: Process, problems and solutions." Proceedings of the In-ternational Power Electronics Conference (IPEC-Niigata 2005), Nii-gata, Japan. 2005.
    [5] MARTIN, Jeremi. Distributed vs. centralized electricity generation: are we witnessing a change of paradigm. An introduction to distributed generation, 2009.
    [6] A. Krishna R and L. P. Suresh, "A brief review on multilevel inverter topologies," 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 2016, pp. 1-6.
    [7] H. J. Knaak, "Modular multilevel converters and HVDC/FACTS: A
    success story," in Proceedings of the 14th IEEE European Conference
    on Power Electronics and Applications, EPE 2011, pp.1-6.

    [8] P. Sintupatsuk, S. Khomfoi and P. Paisuwanna, "A dc to dc multilevel modular capacitor clamped converter with electrical grounding isola-tion and bidirectional power flow for a dc microgrid application," 2012 9th International Conference on Electrical Engineer-ing/Electronics, Computer, Telecommunications and Information Technology, 2012.
    [9] Gupta KK, Ranjan A, Bhatnagar P, Sahu LK, Jain S. Multilevel invert-er topologies with reduced device count: A review. IEEE transactions on Power Electronics. 2015 Feb 26;31(1):135-51. [10] Thielemans, Steven, and Jan Melkebeek. "Flying capacitor multilevel converters for AC machines." Proceedings 4th IEEE Benelux Young Researchers Symposium 2008.
    [10] P. Qashqai, A. Sheikholeslami, H. Vahedi and K. Al-Haddad, "A Re-view on Multilevel Converter Topologies for Electric Transportation Applications," 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), 2015, pp. 1-6, doi: 10.1109/VPPC.2015.7352882.
    [11] Rodriguez J, Franquelo LG, Kouro S, Leon JI, Portillo RC, Prats MA, Perez MA. Multilevel converters: An enabling technology for high-power applications. Proceedings of the IEEE. 2009 Oct 20;97(11):1786-817.
    [12] D. Reusch, F. C. Lee and M. Xu, "Three level buck converter with control and soft startup," 2009 IEEE Energy Conversion Congress and
    [13] Thielemans, Steven, and Jan Melkebeek. "Flying capacitor multilevel converters for AC machines." In Proceedings 4th IEEE Benelux Young Researchers Symposium 2008. 2008.
    [14] Ge, Baoming, Fang Zheng Peng, and Yongdong Li. "Multilevel con-verter/inverter topologies and applications." Power Electronics for Renewable Energy Systems, Transportation and Industrial Applica-tions" 2014.

    [15] 薛雅麗, 李斌, 阮新波. 「Buck 三電平變換器」 電工技術學報. 2003;18(3):29-35.
    [16] 張元媛, 阮新波. 「多電平直流變換器中飛跨電容電壓的一種控制策略」. 中國電機工程學報. 2004;24(8):34-8.
    [17] A. M. Y. M. Ghias, J. Pou, M. Ciobotaru and V. G. Agelidis, "Volt-age-Balancing Method Using Phase-Shifted PWM for the Flying Ca-pacitor Multilevel Converter," in IEEE Transactions on Power Elec-tronics, vol. 29, no. 9, pp. 4521-4531, Sept. 2014.
    [18] 譚皓元,「三階層飛馳電容式直流轉換器」,國立臺灣科技大學電子工程系碩士論文,2021年。
    [19] M. Halamicek, T. Moiannou, N. Vukadinović and A. Prodić, "Ca-pacitive Divider Based Passive Start-up Methods for Flying Capacitor Step-down DC-DC Converter Topologies," 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), 2018.
    [20] X. Liu, P. K. T. Mok, J. Jiang and W. Ki, "Analysis and Design Con-siderations of Integrated 3-Level Buck Converters," in IEEE Transac-tions on Circuits and Systems I: Regular Papers, vol. 63, no. 5, pp. 671-682, May 2016.
    [21] 董鋒斌; 皇金鋒. 「改進型三電平 Buck 直流變換器的建模研究」 電力電子技術, 2008, 42.2: 24-26.
    [22] 俞楊威,「基於PWM逆變器的LC濾波器」浙江大學電力電子研究所,2007年。

    無法下載圖示 全文公開日期 2025/09/29 (校內網路)
    全文公開日期 2025/09/29 (校外網路)
    全文公開日期 2025/09/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE