簡易檢索 / 詳目顯示

研究生: 藍益坤
Lan-Yi Kun
論文名稱: 動脈硬化對心臟血管主動脈弓模型的動態流場與管壁剪應力的影響
Effects of Fluid Influence of Atherosclerosis on Pulsatile Flows and Wall Shear-Stress in Human Aortic Arch Model
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 林怡均
Yi-Jiun Lin
孫珍理
Chen-Li Sun
陳明志
Ming-Jyh Chern
趙振綱
Ching-Kong Chao
劉昌煥
Chang-Huan Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 342
中文關鍵詞: 主動脈弓窄縮動脈粥狀硬化壁面定律
外文關鍵詞: law of wall
相關次數: 點閱:182下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用質點軌跡流場觀察法(PTFV)與質點影像速度儀(PIV),針對人體主動脈弓(aortic arch)及其三支主要分支血管,壁頭動脈(brachiocephalic artery)、左頸總動脈(left common carotid artery)及左鎖骨下動脈(left subclavian artery)進行研究,利用三種不同主動脈弓模型的窄縮率分別為0%(type 1)、25%(type 2)及50%(type 3)探討動脈粥狀硬化斑所造成的管路窄縮對主動脈弓與其分支血流的影響。為了簡化實驗的複雜度,採用透明玻璃製成之主動脈弓硬彎管模型,工作流體以水與甘油混合代替血液,並將工作流體視為牛頓流體且其黏滯係數為常數。流場溫度維持正常體溫37ºc,僅忽略血管的彈性及血管的錐度,降低影響實驗因素。使用血液泵(blood pump)輸出心臟脈波,頻率為1.2 Hz,Womersley parameter為17.31。觀察管內流場之結構衍化以及量測速度、壁面剪應力分佈和紊流強度分佈與紊流動能分佈。並利用壁面定律(law of wall)驗證此套PIV後處理軟體,在徑向速度很小的情況下,靠近壁面的分析結果符合此定律。在實驗中可觀察到,當管路拱型區窄縮率越高時,流體經過動脈硬化之主動脈弓發生分離現象的特徵時間會提前。分離區從拱型區延伸至降胸主動脈內側壁面,分離區內的流場型態包含分離流、渦漩拉伸等。在主動脈弓(type 1)中,拱型區域中心內側壁面所受到的壁面剪應力最小,加上降胸主動脈之分離流對內側壁面的衝擊,造成低密度膽固醇(LDL)容易在此區聚集產生動脈硬化脂肪塊,使得管路窄縮。隨管路窄縮率升高,而窄縮區的剪應力也會劇烈的增加,此時強大的剪應力會作用在硬化物纖維狀的脂肪斑,與膠原蓋,破壞其組織。一旦組織被破壞,血小板將匯聚在此處並凝結形成血栓,導致血液中的氧氣與養分無法運送到器官造成器官機能衰竭、壞死。


    Pulsatile flow characteristics and evolution processes in a model simulating the aortic arch of human being is diagnosed by using the particle tracking flow visualization method (PTFV) and the particle image velocimeter (PIV). The aortic arch model is made of transparent Plexiglas U-tube which has different ratio with three main branches (brachiocephalic artery, left common carotid artery, and left subclavian artery). Working fluid is used as the mixture by water and glycerol. Pulsatile flows simulating the output of a human heart beat is supplied by a “pulsatile blood pump”. The results of this study are obtained using a 72 strokes/minute (1.2 Hz) stroke rate, a 70 ml/stroke (5 L/minute) stroke volume, and a 45%/55% systole/diastole ratio. The temperature, Womersley parameter and time-averaged Reynolds number are measured as 37℃, 17.31, 2869. During systole stroke, the boundary layer on the inner wall separates from the area near the turning arch to the descending thoracic aorta and three dimensional secondary flows are observed. These characteristic flow structures induce reverse and low speed flows and therefore would increase the probability of plaque deposition around the inner wall of the arch. When the stenosis increases, the separation point would be deferred a little to the downstream area and the timing for separation would be advanced. During the diastolic phase, strong reverse flow is produced in the arch. Measured shear stresses show low values around the branch junctions and particularly high values around the outer wall of ascending aorta and descending thoracic aorta. In the aortic arch model with the atherosclerotic, the maximum wall shear stress appears on the inner wall of the arch might crack fibrolipid plaque and collagenous cap of atherosclerotic plaque and therefore would induce rapid assembling of platelets on the exposed connective tissues, form the thrombosis, and therefore diminish the transport of oxygen and metabolites to the organs.

    摘要…………………………...………………….…………………….i Abstract…………………….…………………………………………...ii 誌謝…………………………………………………………………….iii 目錄…………………...……………….…………………………….…iv 符號索引……………………………...………………………….…….viii 表圖索引……………………………………...…………………….….x 第一章 緒論………………………………...…………………….…...1 1.1研究動機…………………………………………………...…...1 1.2文獻回顧……………………………...…………………...……3 1.3研究目標……………………………...…………………...……14 第二章 實驗設備、儀器與方法…………………………..………….15 2.1心臟血管主動脈弓動態流場模擬設備.….……...…..….….….15 2.1.1儲水槽……………………………...……………….……16 2.1.2脈動血液泵…………………………..……………..……16 2.1.3心臟血管主動脈弓模型(aortic arch).…………...……….16 2.1.4管路系統………………………………….……….…..…17 2.2實驗儀器………………………….…………………….…..….17 2.2.1壓力轉換器……………………………………..…..……17 2.2.2葉輪式流量計…………….……….…………………..…17 2.2.3浮子式流量計…………………….……………….…..…17 2.2.4數據擷取與控制系統…………………………….……...18 2.3質點特性分析……………………………………….…...……...18 2.4質點軌跡流場觀察法(PTFV)…………………………..……....24 2.5質點影像速度儀(PIV)…………………………………...……..26 2.5.1PIV系統介紹…..……………….…………..………...…..26 2.5.2PIV系統硬體架構………………………..………..……..29 2.5.3PIV系統軟體架構……..………….……………………...31 2.5.4時間平均…..…………….…………………..…………...33 2.5.5樣本平均..…………..…………………………………....34 第三章 可視化的流場衍化型態(PTFV結果).……….…...………….36 3.1質點軌跡流場可視化在正常主動脈弓模型(type 1)所觀察到的流場結構衍化…………………………………………........... 38 3.1.1主動脈弓正向對稱截面..…………………………………38 3.1.2主動脈弓中心橫截面..……………………………………39 3.2質點軌跡流場可視化在動脈硬化病變之主動脈弓模型(type 2)所觀察到的流場結構衍化…………………………………… 40 3.2.1主動脈弓正向對稱截面..…………………………………40 3.2.2主動脈弓中心橫截面..……………………………………42 3.3質點軌跡流場可視化在動脈硬化病變之主動脈弓模型(type 3)觀察到的流場結構衍化…………………………................... 43 3.3.1主動脈弓正向對稱截面..…………………………………43 3.3.2主動脈弓中心橫截面..……………………………………44 3.4討論……………………………………………………………...44 第四章 量化的流場衍化型態(PIV量測) ..…………………………..46 4.1質點影像速度儀在正常主動脈弓(type 1)模型量測的流場結構與衍化………...………………………………………………47 4.1.1主動脈弓(type 1)正向對稱截面.……………………….47 (a)瞬間流場衍化………………………………………….47 (b)相位平均流場型態…………………………………….48 4.1.2主動脈弓(type 1)中心橫截面………………………….49 (a)瞬間流場衍化………………………………………….49 (b)相位平均流場型態…………………………………….50 4.2質點影像速度儀 PIV在動脈硬化之主動脈弓(type 2)模型量測的流場結構與衍化………...…………………………………50 4.2.1動脈硬化之主動脈弓(type 2)正向對稱截面.………….50 (a)瞬間流場衍化………………………………………….50 (b)相位平均流場型態…………………………………….52 4.2.2動脈硬化之主動脈弓(type 2)中心橫截面……………….52 (a)瞬間流場衍化………………………………………….52 (b)相位平均流場型態…………………………………….53 4.3質點影像速度儀 PIV在動脈硬化之主動脈弓(type 3)模型量測的流場結構與衍化………...…………………………………53 4.3.1動脈硬化之主動脈弓(type 3)正向對稱截面.………….53 (a)瞬間流場衍化………………………………………….53 (b)相位平均流場型態…………………………………….54 4.3.2動脈硬化之主動脈弓(type 3)中心橫截面……………….55 (a)瞬間流場衍化………………………………………….55 (b)相位平均流場型態…………………………………….55 4.4討論…………………….……….………………………………56 第五章 速度分佈……….……….…………………………………….58 5.1質點影像速度儀在主動脈弓模型(type 1)正向對稱截面量測的軸向速度分佈………………………….………..……………58 5.2質點影像速度儀在主動脈弓模型(type 1)分支血管(臂頭動脈、左頸總動脈、左鎖骨下動脈)正向對稱截面量測的軸向速度分佈…….………….………...……………………………….. 59 5.3質點影像速度儀在動脈硬化之主動脈弓模型(type 2)正向對稱截面量測的軸向速度分佈….……………………….............. 60 5.4質點影像速度儀在動脈硬化之主動脈弓模型(type 2)分支血管(臂頭動脈、左頸總動脈、左鎖骨下動脈)正向對稱截面量測的軸向速度分佈…………………………………………… 62 5.5質點影像速度儀在動脈硬化之主動脈弓模型(type 3)正向對稱截面量測的軸向速度分佈………………………………… 63 5.6質點影像速度儀在動脈硬化之主動脈弓模型(type 3)分支血管(臂頭動脈、左頸總動脈、左鎖骨下動脈)正向對稱截面量測的軸向速度分佈…………………………………………… 64 第六章 壁面剪應力分佈……………..…………...……………….….66 6.1璧面定律………………………………………………………...67 6.2主動脈弓模型(type 1)正向對稱截面璧面剪應力分佈………………........................................................................... 71 6.3主動脈弓模型(type 1)分支血管正向對稱截面璧面剪應力分佈…………................................................................................... 73 6.4動脈硬化之主動脈弓模型(type 2)正向對稱截面璧面剪應力分佈……………........................................................................... 74 6.5動脈硬化之主動脈弓模型(type 2)分支血管正向對稱截面璧面剪應力分佈…………………………………………………... 75 6.6動脈硬化之主動脈弓模型(type 3)正向對稱截面璧面剪應力分佈……………………………………………………………... 76 6.7動脈硬化之主動脈弓模型(type 3)分支血管正向對稱截面璧面剪應力分佈…………………………………………………... 78 6.8討論……………………………………………………………...79 第七章 結論與建議……………..………...……………………….….81 7.1結論……………………………………………………………...81 7.2建議……………………………………………………………...82 參考文獻………….…………………………………..……………..…83 附錄…………………………………………………………………….276

    [1] DeBakey, M. E., Lawrie, G. M., Glaeser, D. H., “Patterns of atherosclerosis and their surgical significance,” Annals of Surgery, Vol. 201, No. 2, 1985, pp. 115-131.
    [2] Abrams, J., “Chronic stable angina,” The New England Journal of Medicine, Vol. 352, No. 24, 2005, pp. 2524-2533.
    [3] Yu, S. C. M. and Zhao, J. B., “A steady flow analysis on the stented and non-stented sidewall aneurysm models,” Medical Engineering & Physics, Vol.21, April 1999, pp. 133-141.
    [4] Yu, S. C. M., “Steady and pulsatile flow studies in Abdominal Aortic Aneurysm models using Particle Image Velocimetry,” International Journal of Heat and Fluid Flow, Vol. 21, February 2000, pp. 74-83.
    [5] Ku, D. N., “Blood flow in arteries,” Annual Review of Fluid Mechanics, Vol. 29, 1997, pp. 399-434.
    [6] Berger, S. A., Jou, L.-D., “Flows in stenotic vessel,” Annual Review of Fluid Mechanics, Vol. 32, 2000, pp. 347-382.
    [7] Kang, S. G., Tarbell, J. M., “The impedance of curved artery models,” J. Biomechanical Engineering, Vol. 105, Auguest, 1983, pp. 275-282.
    [8] Yu, S. C. M., Zhao, J. B., “A steady flow analysis on the stented and non-stented side wall aneurysm models,” Medical Engineering and Physics, Vol. 21, April, 1999, pp. 133-141.
    [9] Nerem, R. M., “Vascular fluid mechanics, the arterial wall, and atherosclerosis,” Journal of Biomechanical Engineering, Vol. 114, Auguest, 1992, pp. 274-282.
    [10] Kjernes, M., Svindland, A., Walloe, L., Wille, S. O., “Localization of early atherosclerotic lesions in an arterial bifurcation in humans,” Acta. path. microbiol. scand. Sect. A, Vol. 89, 1981, pp. 35-40.
    [11] Malek, A. M., Alper, S. L., Izumo, S., “Hemodynamic shear stress and its role in atherosclerosis,” Journal of the America Medical Association, Vol. 282, No. 21, 1999, pp. 2035-2042.
    [12] Perktold, K., Hofer, M., Rappitsch, G., Loew, M., Kuban, B. D., and Friedman, M. H., “Validated computation of physiologic flow in a realistic coronary artery branch,” Journal of Biomechanics, Vol. 31, December 1998, pp. 217-228.
    [13] Pivkin, I. V., Richardson, P. D., Laidlaw, D. H., and Karniadakis, G. E., “Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model,” Journal of Biomechanics, Vol. 38, June 2005, pp. 1283-1290.
    [14] Nerem, R. M., Cornhill, J. F., “The role of fluid mechanics in atherogenesis,” J. Biomechanical Engineering, Vol. 102, August, 1980, pp. 181-189.
    [15] Lei, M., Kleinstreuer, C., Truskey, G. A., “Numerical investigation and prediction of atherogenic sites in branching arteries,” J. Biomechanical Engineering, Vol. 117, August, 1995, pp. 350-357.
    [16] Pei, Z.-H., Xi, B.-S., Hwang, H. C., “Wall shear stress distribution in a model human aortic arch: assessment by an electrochemical technique,” J. Biomechanics, Vol. 18, No. 9, 1985, pp. 645-656.
    [17] Ku, D. N., Giddens, D. P., Zarins, C. K., Glagov, S., “Pulsatile flow and atherosclerosis in the human carotid bifurcation – positive correlation between plaque location and low and oscillating shear stress,” Arteriosclerosis, Vol. 5, February, 1985, pp. 293-301.
    [18] Naruse, T., Tanishita, K., “Large curvature effect on pulsatile entrance flow in a curved tube: model experiment simulating blood flow in an aortic arch,” J. Biomechanical Engineering, Vol. 118, May, 1996, pp. 180-186.
    [19] Singh, M. P., Sinha, P. C., Aggarwal, M., “Flow in the entrance of the aorta,” J. Fluid Mech., Vol. 87, part 1, 1978, pp. 97-120.
    [20] Pedley, T. J., “Viscous boundary layers in reversing flow,” J. Fluid Mech., Vol. 74, part 1, 1976, pp. 59-79.
    [21] Nerem, R. M., “Vascular fluid mechanics, the arterial wall, and atherosclerosis,” Journal of Biomechanical Engineering, Vol. 114, August 1992, pp. 274-283.
    [22] Berger, S. A., Jou, L-D., “Flows in Stenotic Vessels,” Annual Review of Fluid Mechanics, Vol. 32, January 2000, pp. 347-382.
    [23] Long, Q., Xu, X. Y., Ramnarine, K. V., and Hoskins, P., “Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis,” Journal of Biomechanics, Vol. 34, October 2001, pp. 1229-1242.
    [24] Rodkiewicz, C. M., Kalita, W., Kennedy, J. S., Pelot, R., “On the flow field distortions due to the aortic arch twist,” J. Biomechanics, Vol. 18, No. 10, 1985, pp. 781-787.
    [25] Varghese, S. S., Frankel, S. H., “Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessel,” Journal of Biomechanical Engineering, Vol. 125, August 2003, pp. 445-460.
    [26] Chandran, K. B., Yearwood, T. L., Wieting, D. W., “An experimental study of pulsatile flow in curved tube,” J. Biomechanics, Vol. 12, 1979, pp. 793-805.
    [27] Tada, S., Oshima, S., Yamane, R., “Classification of pulsating flow patterns in curved pipes,” J. Biomechanical Engineering, Vol. 118, August, 1996, pp. 311-317.
    [28] Yearwood, T. L., Chandran, K. B., “Experimental investigation of steady flow through a model of the human aortic arch,” J. Biomecanics, Vol. 13, April, 1980, pp. 1075-1088.
    [29] Chandran, K. B., Yearwood, T. L., “Experimental study of Physiological pulsatile flow in a curved tube,” J. Fluid Mech., Vol. 111, January, 1981, pp. 59-85.
    [30] Yearwood, T. L., Chandran, K. B., “Physiological pulsatile flow experiments in a model of the human aortic arch,” J. Biomechanics, Vol. 15, No. 9, 1984, pp. 683-704.
    [31] Khalighi, B., Chandran, K. B., Chen, C.-J., “Steady flow development past valve prostheses in a model human aorta–I. Centrally occluding valves,” J. Biomechanics, Vol. 16, No. 12, 1983, pp. 1003-1011.
    [32] Khalighi, B., Chandran, K. B., Chen, C.-J., “Steady flow development past valve prostheses in a model human aorta–II. Tilting disc valves,” J. Biomechanics, Vol. 16, No. 12, 1983, pp. 1013-1018.
    [33] Chandran, K. B., Cabel, G. N., Khalighi, B., Chen, C.-J., 1984. “Pulsatile flow past aortic valve bioprostheses in a model human aorta.” J. Biomechanics, Vol. 17, No. 8, pp. 609-619.
    [34] Chandran, K. B., Khalighi, B., Chen, C.-J., “Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta–I. Caged ball valves,” J. Biomechanics, Vol. 18, No. 10, 1985, pp. 763-772.
    [35] Chandran, K. B., Khalighi, B., Chen, C.-J., “Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta–II. Tilting disc valves and the effect of orientation,” J. Biomechanics, Vol. 18, No. 10, 1985, pp. 773-780.
    [36] Nandy, S., Tarbell, J. M., “Measurement of wall shear stress distal to a tri-leaflet valve in a rigid model of the aortic arch with branch flows,” J. Biomechanical Engineering, Vol. 110, August, 1988, pp. 172-179.
    [37] Taylor, G. I., “The criterion for turbulence in curved pipes,” Roy. Soc. Proc., Vol. 124, March, 1929, pp. 243-249.
    [38] Keane, R. D., Adrian, R. J., “Theory of cross-correlation analysis of PIV images,” Applied Scientific Research, Vol. 49, 1992, pp. 191-215.
    [39] Yao, H., Ang, K. C.,Yeo, J. H., “Computational modeling of blood flow through curved atenosed arteries,” Journal of Medical Engineering and technology, Vol. 24, July, 2000, pp. 163-168.
    [40] Yearwood, T. L. and Chandran, K. B., “Experimental investigation of steady flow through a model of the human aortic arch,” Journal of Biomechanics, Vol. 13, 1980, pp. 1075-1088.
    [41] Fry, D. L., “Certain Histological and Chemical Responese of the Vascular Interface to Acutely Induced Mechanical Stress in the Arota of the Dog,” circulation Rch., Vol. 24, 1969, pp. 93-108.
    [42] Caro, C. G. Fitz-Gerald, J. M. and Schroter, R. C., “Atheroma and Arterial Wall Shear,” Proc. R. Soc. Lond., Vol. 177, 1971, pp. 109-159.
    [43]Gessner, F. B., “Hemodynamic Theories of Atherogenesis,Criculation Research,” circulation Rch., Vol. 33, 1973, pp. 259-266.
    [44] Choi, U. S., Talbot, L., Cornet, I., “Experimental study of wall shear rates in the entry region of a curved tube,” J. Fluid Mech., Vol. 93, part 3, 1979, pp. 465-489.
    [45] Bejan. A., Convection Heat Transfer, John Wiley & Sons, New York, 1984, pp. 227-278.
    [46] Clauser, F. H., “Turbulent boundary layers in adverse pressure gradients,” Journal of the Aeronautical Sciences, Vol. 21, February, 1954, pp. 91-108.
    [47] Adrian, R. J., “Particle-imaging techniques for experimental fluid mechanics,” Annual Review of Fluid Mech., Vol. 23, 1991, pp. 261-304.
    [48] Huang, P. G., Bradshaw, P., “Law of the wall for turbulent flows in pressure gradients,” AIAA J., Vol. 33, No. 4, 1995, pp. 624-632.
    [49] Adams, E. W., Johnston, J. P., “Flow structure in the near-wall zone of a turbulent separated flow,” AIAA J., Vol. 26, No. 8, 1988, pp. 932-939.
    [50] 彭楷瑜(編譯),漫畫心臟血管系統,合記圖書出版社,台北, 2003.

    無法下載圖示 全文公開日期 2013/06/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE