簡易檢索 / 詳目顯示

研究生: 陸隆鳴
Long-Ming Lu
論文名稱: 頸椎人工椎體置換器之最佳化分析及生物力學測試:下陷及滑脫
The Optimal Analyses and Biomechanical Experiments of Cervical Vertebral Body Cage: Subsidence and Loosening
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 陳富謀
Fu-Mo Chen
褚晴暉
Ching-Hwei Chue
張瑞慶
Rwei-Ching Chang
黃榮芳
Rong-Fung Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 155
中文關鍵詞: 人工椎體置換器下陷滑脫鬆脫有限元素分析田口法
外文關鍵詞: Vertebral body cage, Subsidence, Retropulsion, Loosening, Finite element analysis, Taguchi method
相關次數: 點閱:335下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

臨床上,頸椎前路切除融合術搭配人工椎體置換器是目前常用來治療嚴重頸椎病之手術方法,用以替代原頸椎之功能,但於臨床使用上發現人工椎體置換器易發生失效行為,造成骨融合失敗或植入物破壞之情形,常見的有下陷與滑脫兩種失效模式,因此,本論文針對不同植入情形,建立頸椎及人工椎體置換器之三維有限元素分析模型,進行下陷強度及拔出強度性能之參數最佳化分析,並執行生物力學測試,相互驗證。且針對骨融合之移植骨材質、骨質密度、端板預留及植入物材質加以探討。
  在下陷及滑脫之參數最佳化分析中,以作者電腦斷層掃瞄影像為參考,建立頸椎三維模型與人工椎體置換器所結合的有限元素分析模型,利用田口工程品質法進行訊噪比及變異數分析,求得人工椎體置換器端面參數之最佳化組合及貢獻度,並進行壓力及拉出強度實驗。由不同植入模式之參數化分析結果得知,凸環型式、齒型數目及內徑是下陷強度之重要參數,而齒型高度及凸環型式是拉出強度之重要參數,主要是取決於界面接觸面積與垂直下陷及拉出方向之多寡,較大的接觸面積可顯著提升抵抗失效行為之能力,且齒型設計參數於非完全植入情形下,扮演較重要的角色。在下陷與拉出強度之有限元素分析及生物力學實驗結果間具有高的相關性,分別大於0.95及0.90。
  在其它重要相關因子分析中,分別利用得到的最佳化人工椎體置換器,改變骨融合之移植骨材質、骨質密度、端板預留及植入物材質,進行下陷及拉出強度分析。首先,於不同骨融合條件之結果發現有無加移植骨或不同移植骨並無明顯之差異。接著,在骨質密度之結果顯示骨質密度之強弱會改變抵抗失效之能力,骨質密度愈高,其抗下陷及滑脫之總反作用力愈大。另外,於端板預留多寡之結果中指出端板預留之接觸面積愈小,會增加臨床失效之風險,顯示出端板預留之重要性。最後,在植入物材質之議題中顯示聚醚醚酮之材質優於碳纖維增強複合塑料及鈦合金之材質,說明愈接近骨頭之材質,能有效降低下陷及滑脫之情形與避免應力遮敝之效益。
  本論文之研究成果可給予骨科醫師於臨床手術及應用時的參考依據,並提供工程領域之研究學者於相關研究方法之依據。


In clinical trials, the vertebral body cage with anterior cervical discectomy and fusion has been widely used to treat cervical diseases and to recover cervical function. In clinical follow-up, failure of the vertebral body cage regularly occurred and resulted in failure of bone fusion and in implant breakage. The subsidence and loosening were the most commonly occurring clinical failures. Therefore, a three-dimensional finite element model of cervical spine with vertebral body cage and biomechanical test were developed to evaluate the intensity of subsidence and retropulsion resistance for different situations of insertion depth. Moreover, the issues of bone fusion, bone mineral density, endplate preservation and implant material are discussed in detail.
In the optimal parametric analyses of subsidence and retropulsion, a three-dimensional finite element model of the cervical spine and vertebral body cage were reconstructed after refering to images of author’s multi-slice computed tomography scan. In order to obtain the optimal parameter design of the vertebral body cage and contribution of factor, the Taguchi method was employed to analyze signal to noise ratio and variance. In the meantime, a compressive test and pullout test were also excuted. From the results of parametric analyses of different insertion situations, the ring type, the number of spike and inner diameter were the important factors for the subsidence and the height of spike and ring type were the important factors for the loosening. Afterwards, the design parameter of the spike played a more important role in the situation of non-completed sinking. The main determination is the amount of the interfacial contact area perpendicular to the direction of subsidence and retropulsion, in that the greater the contact area, the more significant improvement of failure resistance. There was a high correlation between finite element analyses and biomechanical experiments, which were over 0.95 and 0.90 for subsidence and loosening, respectively.
The analyses of another four variables: the bone fusion, bone mineral density, endplate preservation and implant material, were also performed to estimate subsidence and retropulsion resistance. The results showed that the factor of bone fusion was not significant. As such, the resistance ability was increased when bone mineral density and endplate preservation were increased. Finally, the material of polyetheretherketone was an option when reducing the failure and stress shielding.
In this dissertation, the research results offer reference information for clinical orthopedic surgeons and engineering-related researchers.

中文摘要 I 英文摘要 II 誌  謝 III 目  錄 IV 圖表索引 VIII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 脊椎解剖學 5 1.3 脊椎臨床病灶 13 1.4 人工椎體置換器 14 1.5 脊椎臨床手術 18 1.6 文獻回顧 20 1.7 本文架構 31 第二章 頸椎三維有限元素模型構建 33 2.1 頸椎幾何模型構建 33 2.1.1 電腦斷層掃瞄及影像重建 35 2.1.2 分割頸椎骨元件 41 2.2 有限元素法 43 2.3  C1-C7頸椎三維有限元素幾何模型 48 第三章 人工椎體置換器界面之下陷強度分析 51 3.1 田口參數化與有限元素分析 51 3.1.1 田口品質工程法 51 3.1.2 下陷強度之田口品質參數化分析 57 3.1.3 下陷強度之有限元素分析 62 3.1.4 收斂性分析 65 3.1.5 結果 66 3.2 生物力學實驗 74 3.2.1 人造假骨之介紹 74 3.2.2 材料試驗機 75 3.2.3 下陷強度測試 76 3.2.4 相關性分析 79 3.2.5 結果 79 3.3 討論 85 第四章 人工椎體置換器界面之滑脫強度分析 90 4.1 田口參數化與有限元素分析 90 4.1.1 滑脫強度之田口品質參數化分析 90 4.1.2 滑脫強度之有限元素分析 92 4.1.3 收斂性分析 94 4.1.4 結果 95 4.2 生物力學實驗 103 4.2.1 滑脫強度測試 103 4.2.2 相關性分析 106 4.2.3 結果 106 4.3 討論 112 第五章 其它下陷與滑脫影響因子之強度分析 116 5.1 下陷強度與滑脫強度分析 116 5.1.1 不同骨融合條件之分析 116 5.1.2 不同骨質密度之分析 117 5.1.3 不同端板預留之分析 118 5.1.4 不同植入物材料之分析 119 5.2 結果 120 5.3 討論 125 第六章 綜合討論 131 第七章 結論與未來展望 136 7.1 結論 136 7.1.1 最佳化參數設計之下陷及滑脫強度分析 136 7.1.2 下陷及滑脫影響因子之重要性 137 7.2 未來展望 138 參考文獻 140

[1] Majd M. E., Vadhva M. and Holt R. T., “Anterior Cervical Reconstruction Using Titanium Cage With Anterior Plating,” Spine, Vol. 24, No. 15, pp. 1604-1610 (1999).
[2] Chuang H. C., Cho D. Y., Chang C. S., Lee W. Y., Chen C. J., Lee H. C. and Chen C. C., “Efficacy and Safety of the Use of Titanium Mesh Cages and Anterior Cervical Plates for Interbody Fusion After Anterior Cervical Corpectomy,” Surgical Neurology, Vol. 65, No. 5, pp. 464-471 (2006).
[3] Wu J. and Ye X., “Anatomy-Related Risk Factors in Harm’s Mesh Subsidence in Cervical Reconstruction After One-Level Corpectomy,” Journal of Medical Colleges of PLA, Vol. 24, No. 4, pp. 228-234 (2009).
[4] Summers B. N. and Eisenstein S. M., “Donor Site Pain from the Ilium: a Complication of Lumbar Spine Fusion,” The Journal of Bone and Joint Surgery, Vol. 71, No. 4, pp. 677-680 (1989).
[5] Profeta G., de Falco R., Ianniciello G., Profeta L., Cigliano A. and Raja A. I., “Preliminary Experience With Anterior Cervical Microdiscectomy and Interbody Titanium Cage Fusion (Novus CT-Ti) in Patients With Cervical Disc Disease,” Surgical Neurology, Vol. 53, No. 5, pp. 417-426 (2000).
[6] Sasso R. C., LeHuec J. C., Shaffrey C. and Spine Interbody Research Group, “Iliac Crest Bone Graft Donor Site Pain After Anterior Lumbar Interbody Fusion: a Prospective Patient Satisfaction Outcome Assessment,” Journal of Spinal Disorders & Techniques, Vol. 18, No. Suppl 1, pp. S77-S81 (2005).
[7] Palmer W., Crawford-Sykes A. and Rose R. E., “Donor Site Morbidity Following Iliac Crest Bone Graft,” West Indian Medical Journal, Vol. 57, No. 5, pp. 490-492 (2008).
[8] Samartzis D., Marco R. A., Jenis L. G., Khanna N., Banco R. J., Goldberg E. J and An H. S., “Characterization of Graft Subsidence in Anterior Cervical Discectomy and Fusion With Rigid Anterior Plate Fixation,” The American Journal of Orthopedics, Vol. 36, No. 8, pp. 421-427 (2007).
[9] Xie N., Yuan W., Ye X. J., Ni B., Chen D. Y., Xiao J. R. and Jia L. S., “Anterior Cervical Locking Plate-Related Complications: Prevention and Treatment Recommendations,” International Orthopaedics, Vol. 32, No. 5, pp. 649-655 (2008).
[10] Moed B. R., Grimshaw C. S. and Segina D. N., “Failure of Locked Design-Specific Plate Fixation of the Pubic Symphysis: a Report of Six Cases,” Journal of Orthopaedic Trauma, Vol. 26, No. 7, pp. e71-75 (2012).
[11] Shin S. J., Do N. H. and Jang K. Y., “Risk Factors for Postoperative Complications of Displaced Clavicular Midshaft Fractures,” The Journal of Trauma and Acute Care Surgery, Vol. 72, No. 4, pp. 1046-1050 (2012).
[12] Shimamoto N., Cunningham B. W., Dmitriev A. E., Minami A. and McAfee P. C., “Biomechanical Evaluation of Stand-Alone Interbody Fusion Cages in the Cervical Spine,” Spine, Vol. 26, No. 19, pp. E432-E436 (2001).
[13] Daubs M. D., “Early Failures Following Cervical Corpectomy Reconstruction With Titanium Mesh Cages and Anterior Plating,” Spine, Vol. 30, No. 12, pp. 1402-1406 (2005).
[14] Grob D., Daehn S. and Mannion A. F., “Titanium Mesh Cages (TMC) in Spine Surgery,” European Spine Journal, Vol. 14, No. 3, pp. 211-221 (2005).
[15] Shams S. and Rashid M. J., “Anterior Cervical Reconstruction Using Titanium Mesh Cages,” Journal of Ayub Medical College Abbottabad, Vol. 19, No. 1, pp. 23-25 (2007).
[16] Ha S. K., Park J. Y., Kim S. H., Lim D. J., Kim S. D. and Lee S. K., “Radiologic Assessment of Subsidence in Stand-Alone Cervical Polyetheretherketone (PEEK) Cage,” Journal of Korean Neurosurgical Society, Vol. 44, No. 6, pp. 370-374 (2008).
[17] Fujibayashi S., Neo M. and Nakamura T., “Stand-Alone Interbody Cage Versus Anterior Cervical Plate for Treatment of Cervical Disc Herniation: Sequential Changes in Cage Subsidence,” Journal of Clinical Neuroscience, Vol. 15, No. 9, pp. 1017-1022 (2008).
[18] Lee J. H., Jeon D. W., Lee S. J., Chang B. S. and Lee C. K., “Fusion Rates and Subsidence of Morselized Local Bone Grafted in Titanium Cages in Posterior Lumbar Interbody Fusion Using Quantitative Three-Dimensional Computed Tomography Scans,” Spine, Vol. 35, No. 15, pp. 1460-1465 (2010).
[19] Lemcke J., Al-Zain F., Meier U. and Suess O., “Polyetheretherketone (PEEK) Spacers for Anterior Cervical Fusion: a Retrospective Comparative Effectiveness Clinical Trial,” The Open Orthopaedics Journal, Vol. 5, pp. 348-353 (2011).
[20] Zhou J., Li X., Dong J., Zhou X., Fang T., Lin H. and Ma Y., “Three-Level Anterior Cervical Discectomy and Fusion With Self-Locking Stand-Alone Polyetheretherketone Cages,” Journal of Clinical Neuroscience, Vol. 18, No. 11, pp. 1505-1509 (2011).
[21] Thome C., Krauss J. K. and Zevgaridis D., “A Prospective Clinical Comparison of Rectangular Titanium Cages and Iliac Crest Autografts in Anterior Cervical Discectomy and Fusion,” Neurosurgical Review, Vol. 27, No. 1, pp. 34-41 (2004).
[22] Sasani M. and Ozer A. F., “Single-Stage Posterior Corpectomy and Expandable Cage Placement for Treatment of Thoracic or Lumbar Burst Fractures,” Spine, Vol. 34, No. 1, pp. E33-E40 (2009).
[23] Cabraja M., Oezdemir S., Koeppen D. and Kroppenstedt S., “Anterior Cervical Discectomy and Fusion: Comparison of Titanium and Polyetheretherketone Cages,” BMC Musculoskeletal Disorders, Vol. 13, pp. 172-180 (2012).
[24] Chen Y., He Z. M., Yang H. S., Liu X. W., Wang X. W. and Chen D. Y., “Anterior Cervical Diskectomy and Fusion for Adjacent Segment Disease,” Orthopedics, Vol. 36, No. 4, pp. e501-e508 (2013).
[25] Kang L. Q., Lin D. S., Ding Z. Q., Liang B. W. and Lian K. J., “Artificial Disk Replacement Combined With Midlevel ACDF Versus Multilevel Fusion for Cervical Disk Disease Involving 3 Levels,” Orthopedics, Vol. 36, No. 1, pp. e88-e94 (2013).
[26] Hollowell J. P., Vollmer D. G., Wilson C. R., Pintar F. A. and Yoganandan N., “Biomechanical Analysis of Thoracolumbar Interbody Constructs: How Important Is the Endplate?,” Spine, Vol. 21, No. 9, pp. 1032-1036 (1996).
[27] Steffen T., Tsantrizos A. and Aebi M., “Effect of Implant Design and Endplate Preparation on the Compressive Strength of Interbody Fusion Constructs,” Spine, Vol. 25, No. 9, pp. 1077-1084 (2000).
[28] Furderer S., Schollhuber F., Rompe J. D. and Eysel P., “Effect of Design and Implantation Technique on Risk of Progressive Sintering of Various Cervical Vertebrae Cages,” Der Orthopade, Vol. 31, No. 5, pp. 466-471 (2002).
[29] Oxland T. R., Grant J. P., Dvorak M. F. and Fisher C. G., “Effects of Endplate Removal on the Structural Properties of the Lower Lumbar Vertebral Bodies,” Spine, Vol. 28, No. 8, pp. 771-777 (2003).
[30] Moon H. J., Kim J. H., Kim J. H., Kwon T. H., Chung H. S. and Park Y. K., “The Effects of Anterior Cervical Discectomy and Fusion With Stand-Alone Cages at Two Contiguous Levels on Cervical Alignment and Outcomes,” Acta neurochirurgica, Vol. 153, No. 3, pp. 559-565(2011).
[31] Bilbao G., Duart M., Aurrecoechea J. J., Pomposo I., Igartua A., Catalan G., Jauregui M. L. and Garibi J., “Surgical Results and Complications in a Series of 71 Consecutive Cervical Spondylotic Corpectomies,” Acta neurochirurgica, Vol. 152, No. 7, pp. 1155-1163(2010).
[32] Pechlivanis I., Thuring T., Brenke C., Seiz M., Thome C., Barth M., Harders A. and Schmieder K., “Non-Fusion Rates in Anterior Cervical Discectomy and Implantation of Empty Polyetheretherketone Cages,” Spine, Vol. 36, No. 1, pp. 15-20(2010).
[33] Kolstad F., Nygaard O. P., Andresen H. and Leivseth G., “Anterior Cervical Arthrodesis Using a “Stand Alone” Cylindrical Titanium Cage: Prospective Analysis of Radiographic Parameters,” Spine, Vol. 35, No. 16, pp. 1545-1550(2010).
[34] Kast E., Derakhshani S., Bothmann M. and Oberle J., “Subsidence After Anterior Cervical Inter-Body Fusion. a Randomized Prospective Clinical Trial,” Neurosurgical Review, Vol. 32, No. 2, pp. 207-214(2009).
[35] Ha S. K., Park J. Y., Kim S. H., Lim D. J., Kim S. D. and Lee S. K., “Radiologic Assessment of Subsidence in Stand-Alone Cervical Polyetheretherketone (PEEK) Cage,” Journal of Korean Neurosurgical Society, Vol. 44, No. 6, pp. 370-374(2008).
[36] Chen Y., Chen D. Y., Guo Y. F., Wang X. W., Lu X. H., He Z. M. and Yuan W., “Subsidence of Titanium Mesh Cage: a Study Based on 300 Cases,” Journal of Spinal Disorders & Techniques, Vol. 21, No. 7, pp. 489-492 (2008).
[37] Arts M. P. and Peul W. C., “Vertebral Body Replacement Systems with Expandable Cages in the Treatment of Various Spinal Pathologies: a Prospectively Followed Case Series of 60 Patients,” Neurosurgery, Vol. 63, No. 3, pp. 537-545(2008).
[38] Chiang C. J., Kuo Y. J., Chiang Y. F., Rau G. and Tsuang Y. H., “Anterior Cervical Fusion Using a Polyetheretherketone Cage Containing a Bovine Xenograftp: Three to Five-year Follow-up,” Spine, Vol. 33, No. 23, pp. 2524-2528 (2008).
[39] Barsa P. and Suchomel P., “Factors Affecting Sagittal Malalignment due to Cage Subsidence in Standalone Cage Assisted Anterior Cervical Fusion,” European Spine Journal, Vol. 16, No. 9, pp. 1395-1400(2007).
[40] Villavicencio A. T., Pushchak E., Burneikiene S. and Thramann J. J., “The Safety of Instrumented Outpatient Anterior Cervical Discectomy and Fusion,” The Spine Journal, Vol. 7, No. 2, pp. 148-153(2007).
[41] Bartels R. H., Donk R. D. and Feuth T., “Subsidence of Stand-Alone Cervical Carbon Fiber Cages,” Neurosurgery, Vol. 58, No. 3, pp. 502-508(2006).
[42] Woiciechowsky C., “Distractable Vertebral Cages for Reconstruction After Cervical Corpectomy,” Spine, Vol. 30, No. 15, pp. 1736-1741(2005).
[43] Chen L., Yang H. and Tang T., “Cage Migration in Spondylolisthesis Treated With Posterior Lumbar Interbody Fusion Using BAK Cages,” Spine, Vol. 30, No. 19, pp. 2171-2175 (2005).
[44] van Jonbergen H. P., Spruit M., Anderson P. G. and Pavlov P. W., “Anterior Cervical Interbody Fusion with a Titanium Box Cage: Early Radiological Assessment of Fusion and Subsidence,” The Spine Journal, Vol. 5, No. 6, pp. 645-649(2005).
[45] Balabhadra R. S., Kim D. H. and Zhang H. Y., “Anterior Cervical Fusion Using Dense Cancellous Allografts and Dynamic Plating,” Neurosurgery, Vol. 54, No. 6, pp. 1405-1411(2004).
[46] Dvorak M. F., Kwon B. K., Fisher C. G, Eiserloh H. L., Boyd M. and Wing P. C., “Effectiveness of Titanium Mesh Cylindrical Cages in Anterior Column Reconstruction After Thoracic and Lumbar Vertebral Body Resection,” Spine, Vol. 28, No. 9, pp. 902-908(2003).
[47] Gercek E., Arlet V., Delisle J. and Marchesi D., “Subsidence of Stand-Alone Cervical Cages in Anterior Interbody Fusion: Warning,” European Spine Journal, Vol. 12, No. 5, pp. 513-516(2003).
[48] Matge G., “Cervical Cage Fusion With 5 Different Implants: 250 Cases,” Acta neurochirurgica, Vol. 144, No. 6, pp. 539-550 (2002).
[49] Tye G. W., Graham R. S., Broaddus W. C. and Young H. F., “Graft Subsidence After Instrument-Assisted Anterior Cervical Fusion,” Journal of Neurosurgery, Vol. 97, No. 2 Suppl, pp. 186-192(2002).
[50] Matge G. and Leclercq T. A., “Rationale for Interbody Fusion With Threaded Titanium Cages at Cervical and Lumbar Levels. Results on 357 Cases,” Acta neurochirurgica, Vol. 142, No. 4, pp. 425-434 (2000).
[51] 张君、孙树椿,「颈椎病流行病学和病因学新发展」,流行病学,第十九卷,第七期,第68-69頁 (2005).
[52] Lim T. H., Kwon H, Jeon C. H., Kim J. G., Sokolowski M., Natarajan R. and An H. S., “Effect of Endplate Conditions and Bone Mineral Density on the Compressive Strength of the Graft-Endplate Interface in Anterior Cervical Spine Fusion,” Spine, Vol. 26, No. 8, pp. 951-956 (2001).
[53] Hasegawa K., Abe M., Washio T. and Hara T., “An Experimental Study on the Interface Strength Between Titanium Mesh Cage and Vertebra in Reference to Vertebral Bone Mineral Density,” Spine, Vol. 26, No. 8, pp. 957-963 (2001).
[54] Dietl R. H., Krammer M., Kettler A., Wilke H. J., Claes L. and Lumenta C. B., “Pullout Test With Three Lumbar Interbody Fusion Cages,” Spine, Vol. 27, No. 10, pp. 1029-1036 (2002).
[55] Chang Y. B., Xu D. C. and Yin Q. S., “Pullout Test of a Newly Designed Shape Memeory Alloy Lumbar Interbody Fusion Cage,” The Orthopedic Journal of China, Vol. 12, No. 7, pp. 534-536 (2004).
[56] Chiang M. F., Teng J. M., Huang C. H., Cheng C. K., Chen C. S., Chang T. K. and Chao S. H., “Finite Element Analysis of Cage Subsidence in Cervical Interbody Fusion,” Journal of Medical and Biological Engineering, Vol. 24, No. 4, pp. 201-208 (2004).
[57] Lowe T. G., Hashim S., Wilson L. A., O'Brien M. F., Smith D. A., Diekmann M. J. and Trommeter J., “A Biomechanical Study of Regional Endplate Strength and Cage Morphology as It Relates to Structural Interbody Support,” Spine, Vol. 29, No. 21, pp. 2389-2394 (2004).
[58] Cheng C. C, Ordway N. R., Zhang X., Lu Y. M., Fang H. and Fayyazi A. H., “Loss of Cervical Endplate Integrity Following Minimal Surface Preparation,” Spine, Vol. 32, No. 17, pp. 1852-1855 (2007).
[59] Buttermann G. R., Beaubien B. P., Freeman A. L., Stoll J. E. and Chappuis J. L., “Interbody Device Endplate Engagement Effects on Motion Segment Biomechanics,” The Spine Journal, Vol. 9, No. 7, pp. 564-573 (2009).
[60] Pflugmacher R., Schleicher P., Schaefer J., Scholz M., Ludwig K., Khodadadyan-Klostermann C., Haas N. P. and Kandziora F., “Biomechanical Comparison of Expandable Cages for Vertebral Body Replacement in the Thoracolumbar Spine,” Spine, Vol. 29, No. 13, pp. 1413-1419 (2004).
[61] Kim D. H., Rhim R., Li L., Martha J., Swaim B. H., Banco R. J., Jenis L. G. and Tromanhauser S. G., “Prospective Study of Iliac Crest Bone Graft Harvest Site Pain and Morbidity,” The Spine Journal, Vol. 9, No. 11, pp. 886-892 (2009).
[62] Hsu W. H, Hsu C. C., Chao C. C., Tsai Y. H., and Hsu H. C., “Analysis of Compressive Strength and Subsidence of a Vertebral Body Cage With Taguchi Methods,” Journal of the Chinese Institute of Engineers, Vol. 33, No. 4, pp. 541-550 (2010).
[63] Schmitz B., Pitzen T., Beuter T., Steudel W. I. and Reith W., “Size of Cervical Vertebral Canal-Measurements in Lateral Cervical Radiographs & Dried Bones,” International Journal of Biological and Medical Research, Vol. 2, No. 3, pp. 778-780 (2011).
[64] Stemper B. D., Yoganandan N., Pintar F. A., Maiman D. J., Meyer M. A., DeRosia J., Shender B. S. and Paskoff G., “Anatomical Gender Differences in Cervical Vertebrae of Size-Matched Volunteers,” Spine, Vol. 33, No. 22, pp. E44-E49 (2008).
[65] Kim M. K., Kwak D. S., Park C. K., Park S. H., Oh S. M., Lee S. W. and Han S. H., “Quantitative Anatomy of the Endplate of the Middle and Lower Cervical Vertebrae in Koreans,” Spine, Vol. 32, No. 14, pp. E376-E381 (2007).
[66] Pitzen T., Schmitz B., Georg T., Barbier D., Beuter T.,Steudel W. I. and Reith W., “Variation of Endplate Thickness in the Cervical Spine,” European Spine Journal, Vol. 13, No. 3, pp. 235-240 (2004).
[67] Schmitz B., Pitzen T., Beuter T., Steudel W. I. and Reith W., “Regional Variations in the Thickness of Cervical Spine Endplates as Measured by Computed Tomography,” Acta Radiologica, Vol. 45, No. 1, pp. 53-58 (2004).
[68] Jiang Z. S., Zhang Z. L., Liu L. C. and Yuan Z. N., “Cervical CT Measurement on Patients of Cervical Spondylotic Myelopathy and Its Clinical Significance,” Chinese Journal of Spine and Spinal Cord, Vol. 13, No. 4, pp. 220-223 (2003).
[69] Panjabi M. M., Chen N. C., Shin E. K. and Wang J. L., “The Cortical Shell Architecture of Human Cervical Vertebral Bodies,” Spine, Vol. 26, No. 22, pp. 2478-2484 (2001).
[70] Toosizadeh N. and Haghpanahi M., “Generating a Finite Element Model of the Cervical Spine: Estimating Muscle Forces and Internal Loads,” Scientia Iranica, Vol. 18, No. 6, pp. 1237-1245 (2011).
[71] Lee S. H., Im Y. J., Kim K. T., Kim Y. H., Park W. M. and Kim K., “Comparison of Cervical Spine Biomechanics After Fixed- and Mobile-Core Artificial Disc Replacement: a Finite Element Analysis,” Spine, Vol. 36, No. 9, pp. 700-708 (2011).
[72] Hussain M., Natarajan R. N., An H. S. and Andersson G. B., “Patterns of Height Changes in Anterior and Posterior Cervical Disc Regions Affects the Contact Loading at Posterior Facets During Moderate and Severe Disc Degeneration: a Poroelastic C5-C6 Finite Element Model Study,” Spine, Vol. 35, No. 18, pp. E873-E881 (2010).
[73] Chen B. Z., Zhao W., Wang Y. D. and Xie S. M., “Finite Element Analysis of Cervical Spine Plate Using Double Cage Fusion,” Bioinformatics and Biomedical Engineering, Vol. 26, No. 22, pp. 2478-2484 (2010).
[74] Schmieder K., Wolzik-Grossmann M., Pechlivanis I., Engelhardt M., Scholz M. and Harders A., “Subsidence of the Wing Titanium Cage After Anterior Cervical Interbody Fusion: 2-Year Follow-Up Study,” Journal of Neurosurgery: Spine, Vol. 4, No. 6, pp. 447-453 (2006).
[75] Waschke A., Kaczor S., Walter J., Duenisch P., Kalff R. and Ewald C., “Expandable Titanium Cages for Anterior Column Cervical Reconstruction and Their Effect on Sagittal Profile: a Review of 48 Cases,” Acta Neurochir (Wien), Vol. 155, No. 5, pp. 801-807 (2013).
[76] Tan J. S., Bailey C. S., Dvorak M. F., Fisher C. G. and Oxland T. R., “Interbody Device Shape and Size Are Important to Strengthen the Vertebra-Implant Interface,” European Spine Journal, Vol. 30, No. 6, pp. 638-644 (2005).
[77] Kandziora F., Pflugmacher R., Schafer J., Born C., Duda G., Haas N. P. and Mittlmeier T., “Biomechanical Comparison of Cervical Spine Interbody Fusion Cages,” Spine, Vol. 26, No. 17, pp. 1850-1857 (2001).
[78] Knop C., Lange U., Bastian L., Oeser M. and Blauth M., “Biomechanical Compression Tests With a New Implant for Thoracolumbar Vertebral Body Replacement,” European Spine Journal, Vol. 10, No. 1, pp. 30-37 (2001).
[79] Wilke H. J., Kettler A., Goetz C. and Claes L., “Subsidence Resulting From Simulated Postoperative Neck Movements,” Spine, Vol. 25, No. 21, pp. 2762-2770 (2000).
[80] Yang K., Teo E. C. and Fuss F. K., “Application of Taguchi Method in Optimization of Cervical ring cage,” Journal of Biomechanics, Vol. 40, No. 14, pp. 3251-3256 (2007).
[81] Fan C. Y., Chao C. K., Hsu C. C. and Chao K. H., “The Optimum Cage Position and Orientation on the ALIF With Facet Screw Fixation: a Finite Element Analysis and the Taguchi Method,” Journal of Mechanics, Vol. 27, No. 3, pp. 309-320 (2011).
[82] Brantigan J. W., Steffee A. D. and Geiger J. M., “A Carbon Fiber Implant to Aid Interbody Lumbar Fusion. Mechanical Testing,” Spine, Vol. 16, pp. S227-S282 (1991).
[83] Tsantrizos A., Andreou A., Aebi M. and Steffen T., “Biomechanical Stability of Five Stand-Alone Anterior Lumbar Interbody Fusion Constructs,” European Spine Journal, Vol. 9, No. 1, pp. 14-22 (2000).
[84] Goel V. K., Dick D., Jackson M., Kuroki H. and Ebraheim N., “Expulsion Testing of an Intervertebral Fusion Cage: Effect of Tooth Design on Pull Out Resistance,” Summer Bioengineering Conference, June 25-29, Sonesta Beach Resort in Key Biscayne, Florida (2003).
[85] Springer S. S., Campbell S. F., Houfburg R. L., Pavlovic J. and Shinbrot A., “Is Push-Out Testing of Cage Devices Worthwhile in Evaluating Clinical Performance?,” ASTM International, pp. 86-90 (2003).
[86] Hsu W. H., Chao C. K., Hsu H. C., Lin J. and Hsu C. C., “Parametric Study On the Interface Pull Out Strength of the Vertebral Body Replacement Cage Using FEM-Based Taguchi Methods,” Medical Engineering & Physics, Vol. 31, No. 3, pp. 287-294 (2009).
[87] Cunningham B. W., Hu N., Zorn C. M. and McAfee P. C., “Comparative Fixation Methods of Cervical Disc Arthroplasty Versus Conventional Methods of Anterior Cervical Arthrodesis: Serration, Teeth, Keels, or Screws?,” Journal of Neurosurgery: Spine, Vol. 12, No. 2, pp. 214-220 (2010).
[88] Homminga J., Weinans H., Gowin W., Felsenberg D. and Huiskes R., “Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution,” Spine, Vol. 26, No. 14, pp. 1555-1561 (2001).
[89] Yoganandan N., Pintar F. A., Stemper B. D., Baisden J. L., Aktay R., Shender B. S. and Paskoff G., “Bone Mineral Density of Human Female Cervical and Lumbar Spines from Quantitative Computed Tomography,” Spine, Vol. 31, No. 1, pp. 73-76 (2006).
[90] Vadapalli S., Robon M., Biyani A., Sairyo K., Khandha A. and Goel V. K., “Effect of Lumbar Interbody Cage Geometry on Construct Stability: a Cadaveric Study,” Spine, Vol. 31, No. 19, pp. 2189-2194 (2006).
[91] Aurori B. F., Weierman R. J., Lowell H. A., Nadel C. I. and Parsons J. R., “Pseudarthrosis After Spinal Fusion for Scoliosis. a Comparison of Autogeneic and Allogeneic Bone Grafts,” Clinical Orthopaedics and Related Research, Vol. 199, No. 2, pp. 153-158 (1985).
[92] Betz R. R., Petrizzo A. M., Kerner P. J., Falatyn S. P., Clements D. H. and Huss G. K., “Allograft Versus No Graft With a Posterior Multisegmented Hook System for the Treatment of Idiopathic Scoliosis,” Spine, Vol. 31, No. 2, pp. 121-127 (2006).
[93] Ryu S. I., Lim J. T., Kim S. M., Paterno J., Willenberg R. and Kim D. H., “Comparison of the Biomechanical Stability of Dense Cancellous Allograft With Tricortical Iliac Autograft and Fibular Allograft for Cervical Interbody Fusion,” European Spine Journal, Vol. 15, No. 9, pp. 1339-1345 (2006).
[94] 86_Muller-Gerbl M., Weisser S. and Linsenmeier U., “The Distribution of Mineral Density in the Cervical Vertebral Endplates,” European Spine Journal, Vol. 17, No. 3, pp. 432-438 (2008).
[95] Grant J. P., Oxland T. R. and Dvorak M. F., “Mapping the Structural Properties of the Lumbosacral Vertebral Endplates,” Spine, Vol. 26, No. 8, pp. 889-896 (2001).
[96] Closkey R. F., Parsons J. R., Lee C. K., Blacksin M. F. and Zimmerman M. C., “Mechanics of Interbody Spinal Fusion: Analysis of Critical Bone Graft Area,” Spine, Vol. 18, No. 8, pp. 1011-1015 (1993).
[97] Grant J. P., Oxland T. R., Dvorak M. F. and Fisher C. G., “The Effects of Bone Density and Disc Degeneration on the Structural Property Distributions in the Lower Lumbar Vertebral Endplates,” Journal of Orthopaedic Research, Vol. 20, No. 5, pp. 1115-1120 (2002).
[98] Zdeblick T. A. and Phillips F. M., “Interbody Cage Devices,” Spine, Vol. 28, No. 15 Suppl, pp. S2-S7 (2003).
[99] Spruit M., Falk R. G., Beckmann L., Steffen T. and Castelein R. M., “The In Vitro Stabilising Effect of Polyetheretherketone Cage Versus a Titanium Cage of Similar Design for Anterior Lumbar Interbody Fusion,” European Spine Journal, Vol. 14, pp. 752-758 (2005).

QR CODE