簡易檢索 / 詳目顯示

研究生: 溫孝勇
Wen-hsiao yung
論文名稱: 橋梁受腐蝕後之耐震行為之個案分析
A Csae Study of Seismic Behavior of corroded bridge reinforcement
指導教授: 歐昱辰
Yu-Chen Ou
口試委員: 蕭輔沛
none
廖文正
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 93
中文關鍵詞: 鋼筋混凝土梁橫向鋼筋替代工法反覆載重剪力強度撓剪破壞耐震
外文關鍵詞: transverse reinforceme
相關次數: 點閱:184下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以橋梁側推模式分析模式,以鋼筋腐蝕程度與服務時間及環境之關係。考慮鋼筋腐蝕對保護層、鋼筋材料性質及對鋼筋握裏性質之影響,進行選現有之橋梁之腐蝕評估。將鋼筋及混凝土之材料參數加以修正,得到修正後的材料參數。
    再將修正後之參數輸入軟體中(Xtract)做分析(第一次以靜力析所求得為輸入之柱軸力),計算鋼筋腐蝕後斷面構件之強度。由Xtract軟體分析計算出之構件斷面強度來分析,並作斷面強度判定,求得塑性鉸資料代入SAP2000進行側推分析,本研究選擇現有之橋梁(橋長2,611m)橋梁,本橋梁於民國80年代建造採用替代工法允許廠商於投標時提出替代工法為一特色,進行考慮腐蝕情況之側推分析。並將求取之Ay、Ac值與考慮腐蝕情況橋梁之Ay、Ac值比較,以驗證橋梁受腐蝕的影響。


    In this study, the bridge mode pushover analysis model to the degree of reinforcement corrosion in service hours and environment relationship. Consider about corrosion on the protective layer, reinforced steel grip on the material properties and the impact in nature, select a Highway Bridge corrosion assessment. To correct the steel and concrete material parameters, and obtain material parameters.
    Then,input correction parameter for analysis by the software (Xtract) ,(static analysis of the first to obtain the input of the column axial force), calculate the cross member reinforced the strength of corrosion. Xtract calculated by the software analysis to analyze the components section strength and determination of cross-sectional strength, and seek information into SAP2000 plastic hinges for pushover analysis. Meanwhile, the Highway Bridge (bridge length 2,611 m) constructed in the Republic of 80s alternative construction method allows vendors to propose an alternative bid is a specialty engineering methods for considering corrosion of pushover analysis. And the values of Ay,Ac we obtain considering corrosion bridges Ay, Ac value comparison, to verify the impact of the bridge corroded.

    目錄 摘要 I 致謝 IV 目錄 V 第一章 緒論 1 1.1研究動機與目的 1 1.2參考文獻 2 1.2.1設計規範:橋梁耐震設計檢討 3 1.2.2設計地震力: 3 1.2.3橋梁之下部構件之耐震效果 4 1.2.4.液化潛能 5 1.2.5. 橋梁施工概述 6 1.2.6本標允許廠商提替代工法(於橋梁節塊常被採用) 6 第二章 、側推分析理論介紹 13 2.1混凝土模型 13 2.2鋼筋材料模型 16 2.3鋼筋混凝土構件力學性質受鋼筋腐蝕之影響 17 2.4鋼筋腐蝕程度與服務時間及環境之關係 18 2.5有保護層混凝土受鋼筋腐蝕對影響 19 2.6鋼筋材料性質受腐蝕之影響 21 2.7 核心混凝土受鋼筋腐蝕的影響 22 2.8鋼筋握裹性質受鋼筋腐蝕之影響 23 2.9 斷面破壞模式 27 2.10 塑鉸破壞模式之判定 30 (1) 剪力行為以塑鉸斷面彎矩與曲率關係表達: 30 (2)建立塑鉸特性: 31 (3)構架式鋼筋混凝土橋墩柱塑性鉸特性之設定 33 2.11 容量曲線與容量震譜曲線 34 2.12 位移-加速度曲線 35 第三章 、側推分析與殘餘能力評估 40 3.1 本章介紹 40 3.2 橋梁側推分析模式 43 3.2.1 橋梁側推分析流程圖 43 3.2.2 橋梁側推分析範例 47 3.2.3 材料強度與結構模型 57 3.2.4塑性鉸破壞模式判斷 68 柱1未劣化 68 柱1劣化 68 柱2未劣化 69 柱2劣化 69 柱3未劣化 70 柱3劣化 70 柱4未劣化 71 柱4j劣化 71 3.2.5塑性鉸破模式判定 72 3.2.6 容量曲線與容量震譜曲線 84 3.2.7 位移-加速度曲線(Ac、Ay 之求取) 87 3.3 橋梁殘餘能力側推分析討論 89 3.4 結論 91 參考文獻 92

    1. 交通部技術標準規範公路類公路工程部,公路橋梁耐震設計規範,交通部頒佈,幼獅文化事業公司出版,民國八十四年四月。
    2. 交通部公路總局,公路橋梁耐震能力評估及補強工程可行性研究,台北市,台灣,2009。
    3. 交通部技術標準規範公路類公路工程部,公路橋梁耐震設計規範,交通部頒佈,幼獅文化事業公司出版,民國九十七年十一月。
    4. 陳彥豪,基礎裸露橋梁耐震能力評估,國立台灣大學土木工程研究所碩士論文,蔡益超教授指導,民國九十四年六月。
    5. 陳正興、張森源、胡邵源、周公台、鍾毓東,建築技術規則建築構造編基礎構造設計規範(含解說),內政部建築研究所,民國八十七年六月。
    6. A. H. S. Ang and W. H. Tang, “Probability Concepts in Engineering Planning and Design”, Volumes I, Basic Principles, Wily, 1984.
    7. Aschheim, M., Moehle, J.P. and Werner, S.D., “ Deformability of Concrete Columns“, Project report under contract No.59Q122, California Department of Transportation, Div. of structures, Sacramento, Calif., June, 1992.
    8. Almusallam, A. A., Al-Gahtani, A. S., Aziz, A. R., Dakhil, F. H., and Rasheeduzzafar. (1996a). “Effect of reinforcement corrosion on flexural behavior of concrete slabs.” J. Mater. Civ. Eng., 8(3), 123–127.
    9. Almusallam, A. A., Al-Gahtani, A. S., Aziz, A. R., and Rasheeduzzafar. (1996b). “Effect of reinforcement corrosion on bond strength.” Constr. Build. Mater., 10(2), 123–129.
    10. Al-Sulaimani, G. J., Kaleemullah, M., Basunbul, I. A., and Rasheeduzzafar. (1990). “Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members.” ACI Struct. J., 87(2), 220–231.
    11. ATC 40, “Seismic Evaluation and Retrofit of Concrete Buildings”, Volume 1, Applied Technology Council, Redwood City, California, 1996.
    12. Bhargacva, K., Ghosh, A. K., Yasuhiro, M., and Ramanujam, S. (2008). “Suggested empirical model for corrosion-induced bond degradation in reinforced concrete.” Journal of Structure Engineering ASCE., 134(2), 221-230.
    13. Computer and Structures, Inc.,SAP2000:Integrated Finite Element Analysis and Design of Structures, Version 7.0, Berkeley, California, USA, 1998.
    14. Computer and Structures, Inc., SAP2000:Integrated finite element analysis and design of structures, Version 14, Berkeley, California,USA, 2010.
    15. Choe, D-E., Gardoni, P., Rosowsky, D., and Haukaas, T. (2008). “Probabilistic capacity models and seismic fragility estimares for RC columns.” Reliability Engineering and System Safety., 93, 383-393.
    16. Chung, L., Cho, S. H., Kim, J. H. J., and Yi, S. T. (2004). “Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars.” Eng. Struct., 26(8), 1013–1026.
    17. Coronelli, D., and Gambarova, P. (2004). “Structural assessment of corroded reinforcement concrete beams: Modeling guidelines.” Journal of Structure Engineering ASCE., 138(8), 1214-1224.
    18. FEMA 273, “NEHRP Guidelines for the Seismic Rehabilitation of Buildings”, Federal Emergency Management Agency, Washington, D.C., 1997.
    19. Hsu, Thomas T. C. (1993). “Unified theory of reinforced concrete.” CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida, 334.
    20. J.B. Mander, M.J.N. Priestly, and R. Park, “Seismic Design of Bridge Piers”, Report 84-2, Department of Civil Engineering, University of Canterbury, Christ-church, New Zealand, 1984.
    21. J.B. Mander, M.J.N. Priestly, and R. Park, “Theoretical Stress-Strain Model for Confined Concrete”, Journal of Structural Engineering, ASCE, Vol. 114, NO. 8, pp. 1804-1826, August 1988.
    22. Lee, H-S., and Cho, Y-S. (2009). ”Evaluation of mechanical properties of steel reinforcement embedded in concrete speciment as a function of the degree of reinforced corrosion.” International Journal Fract., 157, 81-88.
    23. Min-Yuan Cheng and Yu-Wei Wu, “Evolutionary Support Vector Machine Inference System for Construction Management”, Automation in Construction, 18(5), pp.597-604, UK, SCI, EI, 2009.
    24. M.J.N. Priestly, F. Seible, and G.M. Calvi, “Seismic Design and Retrofit of Bridge”, John Wiley & Sons, Inc, New York, 1996.
    25. Mander, J.B., Priestly, M.J.N., and Park, R., “Seismic design of bridge piers”, Report 84-2, Department of Civil Engineering, University of Canterbury, Christ-church, New Zealand, 1984.
    26. Mander, J.B., Priestly, M.J.N., and Park, R., “Theoretical stress-strain model for confined concrete”, Journal of Structural Engineering,ASCE, Vol. 114, NO. 8, pp. 1804-1826, 1988.
    27. Mirza, S.A. and MacGregor, J.G., “Variability of mechanical propertiesof reinforcing bars.” Jour. Struct. Div., ASCE, 105(ST5):921-937, 1979.
    28. Molina, F. J., Alonsoc, C., and Andrade, C. (1993). ”Cover concrete as a fuction of rebar corrosion II: Numerical mode.” Mater. Struct., 26, 532–548..

    無法下載圖示 全文公開日期 2018/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE