簡易檢索 / 詳目顯示

研究生: 王子庭
Tzu-Ting Wang
論文名稱: 以開環歧化聚合法合成與性質鑑定含有雙辛氧基取代之苯並二噻吩與對苯乙烯之嵌段共聚物
Synthesis and Characterization of Conjugated Block Copolymers Containing Dioctyloxy Substituted Benzodithiophenevinylenes and Pheneylenevinylenes by Ring Opening Metathesis Polymerization
指導教授: 游進陽
Chin-Yang Yu
口試委員: 陳志堅
Jyh-Chien Chen
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 114
中文關鍵詞: 環狀雙乙基單體嵌段共聚物雙辛氧基取代之苯並二 噻吩 乙烯基苯乙烯基開環 歧化聚合均聚物自組裝形態學
外文關鍵詞: cyclic monomers, dioctoxy-substituted benzodithiophenevinylenes, phenylenevinylenes, ring-opening metathesis polymerization, homopolymers, block copolymers, self-assembly, morphology
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自 2008 年起 ,苯並二 噻吩 為流行分子,因此此種的衍生物已被開發致功能材
    料,例如有機場效電晶體、有機太陽能電池等。具體而言,苯並二 噻吩 的聚合物
    主要應用於有機太陽能電池中的活性層 ,因為當中的電子遷移率在共軛骨架中非
    常可觀。然而聚苯並 噻吩 的合成 以往是 透過相應的硼酸酯化合物與錫金屬化合物
    來分別進行鈴木偶合與斯蒂勒偶合來進行聚合反應。
    在此研究當中,我們嘗試首先合成相應的環狀雙乙烯基單體,並含有雙辛氧化
    基取代的苯並二 噻吩 和對環芳烷 -1,9-二烯。然後為了獲得不同分子量的含有雙辛
    氧基 取代之苯並二 噻吩 乙 烯基的均聚物,以及含有雙辛氧基取代之苯並二 噻吩 乙
    烯基與苯乙烯基的嵌段共聚物,並分別採用了單體與催化劑可調控比例與固定的
    莫爾體積比的方式,來進行以三代格魯布 催化劑的開環歧化聚合法,這種方式可
    以提供可控制的分子量與較窄的聚合度分佈性。
    聚合物的分子量由 凝膠滲透層析儀來測定,結構透過氫原子核磁共振光譜來確
    定 。光學、熱性質、電化學性質,分別透過紫外可見光吸收光譜、 螢光 光譜,熱
    重量損失分析儀、 熱差示掃描儀和循環伏安法來測定。而為了研究嵌段共聚中的
    自組裝性質 ,利用原子力顯微鏡來研究表面形貌。


    Benzodithiophene has been a popular molecule since 2008, several derivatives had been developed for the optoelectronic applications such as organic field-effect transistor, organic solar cell and so on. In particular, the polymers containing benzodithiphenes were mostly applied in the active layer of the organic solar cell due to the hole mobility is significant efficient in the extended conjugation length. However, the polybenzodithiophene was mostly synthesized by Suzuki-coupling or Stille coupling reaction from the corresponding halides with boronic ester or tin-substituted benzodithiophene, respectively.
    In this project, we attempt to synthesize the corresponded cyclic monomers containing dioctoxy-substituted benzodithiophenophanedienes, and paracyclophane-1,9-dienes. In order to obtain homopolymers containing only dioctoxy-substituted benzodithiophenevinylenes with different molecular weight, and block copolymers with fixed molar ratio of both dioctoxy-substituted benzodithiophenevinylenes and phenylenevinylenes, the polymerization was conducted by using ring opening metathesis polymerization (ROMP) with third-generation Grubb’s catalyst, such method could provide controllable molecular weight and narrow polydispersity of the polymers.
    The polymer molecular weights and polydispersity index were determined by gel permeation chromatography. The structure determinations of the polymers were confirmed by 1H nuclear magnetic resonance spectroscopy. The optical, thermal, and electrochemical properties were determined by UV-Vis absorption spectroscopy, photoluminescence spectroscopy, thermogravimetric analysis, differential scanning calorimeter and cyclic voltammetry. In order to investigate the self-assembly properties of the block copolymers, atomic force microscopy was utilized to study the morphologies.

    Table of Content Abstract ..................................................................................................................................... V 中文摘要 ................................................................................................................................ VII Acknowledgments ................................................................................................................. VIII Table of Content ...................................................................................................................... IX Chapter 1. Introduction and Aims ..................................................................................... 1 1.1 Conjugated Polymers ...................................................................................... 2 1.1.1 Background and development of conjugated polymers .................................. 2 1.1.2 Molecular orbital theory of conjugated polymers ........................................... 2 1.1.3 General synthesis method of efficient conjugated polymers ........................... 4 1.2 Synthesis and derivatives of benzodithiophene ............................................... 7 1.2.1 Background of BDT ........................................................................................ 7 1.2.2 General synthesis method of BDT and its derivatives .................................... 9 1.2.3 Synthesis of PBDTs and their derivatives ..................................................... 11 1.3 McMurry coupling ........................................................................................ 14 1.3.1 Background of McMurry coupling ................................................................ 14 1.3.2 Synthesis of cyclic vinylenes by McMurry coupling .................................... 15 1.3.3 Application of cyclic vinylenes ..................................................................... 16 1.4 Ring opening metathesis polymerization ...................................................... 18 1.4.1 Mechanism of ring-opening polymerization ................................................. 18 1.4.2 Catalyst for ROMP ........................................................................................ 20 1.5 Self-assembly of block copolymer ................................................................ 24 1.5.1 Morphology of self-assembly of block copolymer ....................................... 24 1.5.2 Polymerization induced self-assembly .......................................................... 25 1.5.3 In stiu nanoparticlization of conjugated polymers ........................................ 25 1.6 Aim of the project ......................................................................................... 26 1.7 References ..................................................................................................... 27 X Chapter 2. Results and Discussion .................................................................................. 34 2.1 Synthesis and characterization of BDT-based monomers ............................. 35 2.1.1 Synthesis and characterization of cyclic dioctyloxy-substituted BDT dienes (M1) 35 2.1.2 Synthesis and characterization of cyclic dioctyloxy-substituted BDT trienes (M2) 40 2.1.3 Synthesis and characterization of linear dioctyloxy-substituted BDT dienes (7) 41 2.2 Properties of BDT-based monomers ............................................................. 43 2.2.1 Structure relationship of target molecules ..................................................... 43 2.2.2 Optical and electrochemical properties of target molecules .......................... 45 2.2.3 Thermal properties of target molecules ......................................................... 49 2.3 Synthesis and characterization of [2.2] Paracyclophane-1,9-dienes as monomer 51 2.3.1 Synthesis and characterization of [2.2] Paracyclophane-1,9-dienes (M3) .... 51 2.4 Synthesis and characterization of polymers .................................................. 54 2.4.1 Synthesis of homopolymers (P1a, P1b, P3a, P3b) ........................................ 54 2.4.2 Synthesis of block-copolymers (P2, P4) ....................................................... 55 2.4.3 Molecular weight and structure characterization of polymers ...................... 56 2.5 Properties of polymers................................................................................... 62 2.5.1 Optical properties .......................................................................................... 62 2.5.2 Thermal properties ........................................................................................ 66 2.5.3 Electrochemical properties ............................................................................ 68 2.5.4 Morphology study of the polymer films ........................................................ 71 2.6 References ..................................................................................................... 74 Chapter 3. Conclusion ..................................................................................................... 76 Chapter 4. Experimental Section .................................................................................... 77 4.1 General procedure ......................................................................................... 78 4.2 Synthesis of benzodithiohene-based monomers ............................................ 79 4.2.1 Thiophene-3-carbonyl chloride (1)................................................................ 79 4.2.2 N,N-Diethylthiophene-3-carboxamide (2) .................................................... 80 XI 4.2.3 4,8-Dihydrobenzo[1,2-b:4,5-b']dithiophene-4,8-dione (3) ............................ 80 4.2.4 4,8-Bis(octyloxy)benzo[1,2-b:4,5-b']dithiophene (4) .................................... 81 4.2.5 4,8-Bis(octyloxy)benzo[1,2-b:4,5-b']dithiophene-2,6-dicar-baldehyde (5) .. 81 4.2.6 4,8-Bis(octyloxy)benzo[1,2-b:4,5-b']dithiophene-2-car-baldehyde (6) ........ 82 4.2.7 (E)-1,2-bis(4,8-bis(octyloxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)ethene (7) 83 4.2.8 Tetraoctyloxy-substituted dibenzo-dithiophenacyclohexaphane-2,5-diene (M1). 84 4.2.9 Hexaoctyloxy-substituted dibenzo-dithiophenacyclohexaphane-2,5-triene (M2). 85 4.2.10 1,4-Bis(bromomethyl)benzene (8) ................................................................ 85 4.2.11 1,4-Phenylenedimethanethiol (9) .................................................................. 86 4.2.12 2,11-Dithia[3,3]-paracyclophane (10) ........................................................... 86 4.2.13 1,4(1,4)-Dibenzenacyclohexaphane compound with methyl(phenyl)sulfane (11) 87 4.2.14 (Methylsulfinyl)benzene compound with 1,4(1,4)-dibenzenacyclohexaphane (12) 87 4.2.15 [2,2]Paracyclooctaphane-1,9-diene (M3) ...................................................... 88 4.3 Synthesis of polymers P1a, P1b, P2, P3a, P3b, and P4 ................................. 88 4.3.1 Synthesis of homopolymers P1a and P1b ..................................................... 88 4.3.2 Synthesis of block copolymers P2 ................................................................. 89 4.3.3 Synthesis of homopolymers P3a and P3b ..................................................... 90 4.3.4 Synthesis of block copolymers P4 ................................................................. 90 Appendix ................................................................................................................................. 92

    [1] A. J. Heeger, Angew. Chem. Int. Ed. 2001, 40, 2591-2611.
    28
    [2] H. Usta, A. Facchetti, T. J. Marks, Acc. Chem. Res. 2011, 44, 501-510.
    [3] X. Guo, M. Baumgarten, K. Müllen, Prog. Polym. Sci. 2013, 38, 1832-1908.
    [4] X. Ma, J. S. Kim, R. Ansari, J. Kieffer, Phys. Chem. Chem. Phys. 2019, 21, 789-799.
    [5] A. N. Lakshmiarayanna, A. Onga, C. Y. Chi. J. Mater. Chem. 2018, 6, 3551-3563.
    [6] W. P. Su, J. R. Schrieffer, A. J. Heeger, Phys. Rev. Lett. 1979, 42, 1689-1701.
    [7] M. Rehahn, Chem. Unserer. Zeit. 2003, 37, 18-30.
    [8] U. Salzner, J. B. Lagowski, P. G. Pickup, R. A. Poirier, Synth. Met. 1998, 96, 177-189.
    [9] T. H. Le. Y. Y. Kim, H. S. Yoon, Polymers. 2017, 9, 150.
    [10] A. Facchetti, Mater. Today. 2007, 10, 28-34.
    [11] S. C. Rasmussen, R. L. Schwiderski, M. E. Mulholand, Chem. Commun. 2011, 47, 11394-11410.
    [12] A. Banerji, M. W. Tausch, U. Scherf, Educ. Quím. 2013, 24, 17-22.
    [13] M. Rehahn, E.L. Kunststoffe, Chiu. Z, Chem. Unserer. Zeit. 2003, 37, 20-22.
    [14] H. D. Magurudeniya, R. S. Kularatne, E. A. Rainbolt, M. P. Bhatt, J. W. Murphy, E. E. Sheina, B. E. Gnade, M. C. Biewera, M. C. Stefan, J. Mater. Chem. A. 2014, 2, 8773-8781. [15] T. Bilkay, K. Schulze, T. E. Brening, K. Fink, S. Janietz, Org. Electron. 2013, 14, 344-353.
    [16] R. Chinchilla, C. Na´jera, Chem. Rev. 2007, 107, 874-922.
    [17] J. G. Laquindanum, H. E. Katz, A. J. Lovinger, A. Dodabalapur, Adv. Mater. 1997, 9, 36-39.
    [18] H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu, G. Xu, J. Am. Chem. Soc. 2007, 129, 4112-4113.
    29
    [19] Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, Sci. Bull. 2020, 65, 272-275.
    [20] L.Gao, Z. G. Zhang, L. Xue, J. Min, J. Zhang, Z. Wei, Y Li, Adv. Mater. 2016, 28, 1884-1890.
    [21] Y. Linac, X. Zhan, Mater. Horiz. 2014, 1, 470-488.
    [22] Y. J. Hwang, H. Li, B. A. E. Courtright, S. Subramaniyan, S. A. Jenekhe, Adv. Mater. 2016, 28, 124-131.
    [23] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science. 1995, 270, 1789--1791.
    [24] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature. 1995, 376, 498-500.
    [25] J. H. Hou, M. H. Park, S. Q. Zhang, Y. Yao, L. M. Chen, J. H. Li, Y. Yang, Macromolecules. 2008, 41, 6012-6018.
    [26] L. Huo, J. Hou, Polym. Chem. 2011, 2, 2453-2461.
    [27] E. Zhu, G. Ge, J. Shu, M. Yi, L. Bian, J. Hai, J. Yu, Y. Liu, J. Zhou, W. Tang, J. Mater. Chem. 2014, 2, 13580-13586.
    [28] P. Sista, M. C. Biewer, M. C. Stefan, Macromol. Rapid Commun. 2012, 33, 9−20.
    [29] J. R. Tumbleston, A. C. Stuart, E. Gann, W. You, H. Ade, Adv. Funct. Mater. 2013, 23, 3463-3470.
    [30] W. Li, L. Yang, J. R. Tumbleston, L. Yan, H. Ade, W. You, Adv. Mater. 2014, 26, 4456–4462.
    [31] S. C. Price, A. C. Stuart, L. Yang, H. Zhou, W. You, J. Am. Chem. Soc. 2011, 133, 4625–4631.
    [32] Y. Wu, Z. Li, W. Ma, Y. Huang, L. Huo, X. Guo, M. Zhang, H. Ade, J. Hou, Adv. Mater. 2013, 25, 3449−3455.
    30
    [33] H. Yao, W. Zhao, Z. Zheng, Y. Cui, J. Zhang, Z. Wei, J. Hou, J. Mater. Chem. A 2016, 4, 1708-1713.
    [34] Y. Chen, S. Zhang, Y. Wu, J. Hou, Adv. Mater. 2014, 26, 2744-2749.
    [35] C. Cabanetos, A. E. Labban, J. A. Bartelt, J. D. Douglas, W. R. Mateker, J. M. J. Frechet, M. D. McGehee, P. M. Beaujuge, J. Am. Chem. Soc. 2013, 135, 4656–4659
    [36] B. Qu, D. Tian, Z. Cong, W. Wang, Z. An, C. Gao, Z. Gao, H. Yang, L. Zhang, L. Xiao, Z. Chen, Q. Gong, J. Phys. Chem. 2013, 117, 3272-3278.
    [37] L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, J. Hou, Angew. Chem. Int. Ed. 2011, 50, 9697-9702.
    [38] Y. Huang, F. Liu, X. Guo, W. Zhang, Y. Gu, J. Zhang, C. C. Han, T. P. Russell, J. Hou, Adv. Energy Mater. 2013, 3, 930-937.
    [39] G. Zuo, Z. Li, M. Zhang, X. Guo, Y. Wu, S. Zhang, B. Peng, W. Wei, J. Hou, Polym. Chem. 2014, 5, 1976-1981.
    [40] J. M. Jiang, P. Raghunath, H. K. Lin, Y. C. Lin, M. C. Lin, K. H. Wei, Macromolecules. 2014, 47, 7070-7080.
    [41] X. Wang, Z. G. Zhang, H. Luo, S. Chen, S. Yu, H. Wang, X. Li, G. Yu, Y. Li, Polym. Chem. 2014, 5, 502-511.
    [42] P. Liu, K. Zhang, F. Liu, Y. Jin, S. Liu, T. P. Russell, H.L. Yip, F. Huang, Y. Cao, Chem. Mater. 2014, 26, 3009-3017.
    [43] C. Duan, F. Huang, Y. Cao, J. Mater. Chem. 2012, 22, 10416-10434.
    [44] S. Zhang, M. A. Uddin, W. Zhao, L. Ye, H. Y. Woo, D. Liu, B. Yang, H. Yao, Y. Cui, J. Hou, Polym. Chem. 2015, 6, 2752-2760.
    [45] J. E. McMurry, M. P. Fleming, J. Am. Chem. Soc. 1974, 96, 4708-4709
    [46] T. Mukaiyama, T. Sato, J. Hanna, Chem. Lett. 1973, 1041-1044.
    [47] S. Tyrlik, I. Wolochowicz, B. Soc. Chim. Fr. 1973, 2147-2148
    [48] D. Lenoir, Synthesis. 1977, 553.
    31
    [49] G. P. Boldrini, D. Savoia, E. Tagliavini, C. Trombini, A. Umani-Ronchi, J. Organomet. Chem. 1985, 280, 307-312.
    [50] J. E. McMurry, T. Lectka, J. G. Rico, J. Org. Chem. 1989, 54, 3748-3749.
    [51] J. E. McMurry, Chem. Rev. 1989, 89, 1513-1524
    [52] G. D. Munno, F. Lucchesini, R. Neidlein, Tetrahedron. 1993, 49, 6863.
    [53] Z. Hu, J. L. Atwood, M. P. Cava, J. Org. Chem. 1994, 59, 8071.
    [54] Y. Song, C. A. Di, Z. Wei, T. Zhao, W. Xu, Y. Liu, D. Zhang, D. Zhu, Chem. Eur. J. 2008,14, 4731.
    [55] K. Matsumoto, H. Minami, T. Kawase, M. Oda, Org. Biomol. Chem. 2004, 2, 2323.
    [56] H.F. Gr¨utzmacher, E. Neumann, F. Ebmeyer, K. Albrecht, P. Schelenz, Chem. Ber. 1989, 122, 2291.
    [57] D. Kuzuhara, J. Mack, H. Yamada, T. Okujima, N. Ono, N. Kobayashi, Chem. Eur. J. 2009, 15, 10060.
    [58] Y. Song, C. Di, X.Yang, S. Li, W. Xu, Y. Liu, L. Yang, Z. Shuai, D. Zhang, D. Zhu, J. Am. Chem. Soc. 2006, 128, 15940-15941.
    [59] D.Mäker, C.Maier, K.Brödner, U. H. F. Bunz, Macro Lett. 2014, 3, 415-418.
    [60] Y. J. Lin, H. Y. Chiang, O. Oki, S. Kushida, S.W. Chang, S. T. Chiu, Y. Yamamoto, T. Hosokai, M. Horie, Appl. Polym. Mater. 2019, 1, 2240-2248.
    [61] S. W. Chang, M. Horie, Chem. Commun. 2015, 51, 9113-9116.
    [62] C. C. Wang, C. Y. Yu, Polymer. 2019, 166, 123-129.
    [63] C. J. Liu, C. C. Wang, D. L. Kuo, C. Y. Yu, Polymer. 2019, 181, 121770.
    [64] R. H. Grubbs, Handbook of Metathesis. 2003.
    [65] P. J. He´ risson, C. Yves, Makromol. Chem. 1970, 141, 161-176.
    [66] S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. O’Neal, A. S. Rodgers, R. Walsh, Chem. Rev. 1969, 69, 279-324.
    32
    [67] L. R. Gilliom, R. H. Grubbs, J. Am. Chem. Soc. 1986, 108, 733-742.
    [68] M. B. O’Donoghue, R. R. Schrock, A. M. Lapointe, W. M. Davis, Organometallics. 1996, 15, 1334-1336.
    [69] G. C. Bazan, E. Khosravi, R. R. Schrock, W. J. Feast, V. C. Gibson, M. B. O’Regan, J. K. Thomas, W. M. Davis, J. Am. Chem. Soc. 1990, 112, 8378-8387.
    [70] G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746-1787.
    [71] L. Anita, W. Julia, S. Christian, Polymer. 2010, 51, 2927-2946.
    [72] W. A. Herrmann, C. Kocher, Angew. Chem. Int. Ed. 1997, 36, 2162-2187.
    [73] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953-956.
    [74] C. Y. Yu , S. H. Wen, S. H. Yu, C. C. Wang, Polym. Chem. 2018, 56, 67-74.
    [75] V. Komanduri, D. R. Kumar, D. J. Tate, R. M. Hernandez, B. J. Lidster, M. L. Turner, Polym. Chem. 2019, 10, 3497-3502.
    [76] R. K. M. Khan, S. Torker, A. H. Hoveyda, J. Am. Chem. Soc. 2013, 135, 10258-10261.
    [77] T. W. Hsu, C. Kim, Q. Michaudel, J. Am. Chem. Soc. 2020, 142, 11983-11987.
    [78] L. Leibler, Macromolecules.1980, 13, 1602-1617.
    [79] J. F. Quinn, L. Barner, C. B. Kowollik, E. Rizzardo, T. P. Davis, Macromolecules. 2002, 35, 7620-7627.
    [80] J. S.Wang, K. Matyjaszewski, J. Am. Chem. Soc. 1995,117, 5614-5615.
    [81] S. R. Mane, New J. Chem. 2020, 44, 6690-6698.
    [82] C. Janiak, J. Chem. Soc., Dalton Trans, 2000, 3885–3896.
    [83] S. Shin, M. L. Gu, C. Y. Yu, J. Jeon, E. Lee, T. L. Choi, J. Am. Chem. Soc. 2018, 140, 475-482.
    [84] D. Tuncel, Nanoscale Adv, 2019, 1, 19-33.

    無法下載圖示 全文公開日期 2031/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE