簡易檢索 / 詳目顯示

研究生: 謝承沛
Chen-pei Hsieh
論文名稱: 新穎三明治結構Pt@Ni@Pt奈米觸媒材料應用於甲醇氧化之研究
Synthesis of Novel Sandwich-like Pt@Ni@Pt Nanoparticles and Its Application in Methanol Oxidation Reaction
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 陳良益
Liang-Yih Chen
周澤川
Tse-chuan Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 155
中文關鍵詞: 觸媒三明治結構材料
外文關鍵詞: catalyst, sandwich-like structure, material
相關次數: 點閱:171下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要合成以碳為基材之新穎Pt@Ni@Pt三明治結構奈米觸媒,並探討其在鹼性環境中對甲醇氧化之行為。
在Pt@Ni@Pt三明治結構奈米觸媒之合成,首先合成Pt奈米粒子於碳擔體上(Pt/C)以作為核點,再將含有Ni2+-N2H4錯合物之溶液加入,此時N2H4因Pt之催化而於Pt表面分解,進而將Ni2+還原於Pt表面上形成粒徑約4~5 nm Pt@Ni之核/殼層結構。另一方面,於無Pt核點之存在下,吾人亦嘗試直接以N2H4將Ni2+還原於碳基材上,以減少Pt之用量,然而結果顯示,僅有極微量之Ni2+被還原,表示仍需合適之金屬奈米粒子,以催化N2H4之分解,以控制金屬離子選擇性還原於表面。而第三層Pt則以置換之方式將Pt2+還原於Ni之表面,此時部份Ni被氧化為Ni2+,形成所謂Pt@Ni@Pt之三明治結構,然而,第三層Pt於Ni表面形成島狀之奈米顆粒(約3~4 nm),而非完整之Pt殼層。
本文亦以合成之Pt@Ni@Pt/C於鹼性環境下,進行甲醇氧化反應之研究,發現當第三層Pt量越多時,活性面積越大;且表面的Ni氧化形成Ni(OH)2也具有催化甲醇之功能;又由X光吸收光譜得知,第三層Pt量越多觸媒合金程度亦越高,所以當表面Pt量越多時催化甲醇效果越好。實驗結果得知Ni的存在可以有效幫助CO氧化,大幅改善Pt被CO毒化的問題。因此Pt@Ni@Pt/C觸媒透過Ni的摻入和第三層的Pt加入可以有效改善鹼性直接甲醇燃料電池陽極觸媒之催化效應,並進一步改善其燃料電池操作時因Pt毒化所造成之失效現象。


In this study, novel sandwich-like Pt@Ni@Pt nanosized catalysts on carbon supports are synthesized and the methanol oxidation behaviors on the catalysts are investigated in the alkaline media.
First, carbon supported Pt/C nanocatalysts are employed to be nucleus and then added into the solution of Ni2+-N2H4 complexes for the synthesis of Pt@Ni@Pt nanoparticles. The decomposition of hydrazine is catalyzed by the Pt nucleus and then Ni2+ ions are reduced on the Pt surface to form Pt@Ni catalysts with core/shell structure. The particle size of the obtained Pt@Ni catalysts is about 4~5 nm. We have also tried to reduce Ni2+ on carbon supports without Pt nucleus but only a little bit Ni2+ can be reduced. It indicates that nanocatalysts as nucleus is of great importance to facilitate the decomposition of hydrazine. Pt2+ ions are further reduced on the surface of Pt@Ni by a redox transmetallation reaction (RTM). Part of Ni is oxidized to Ni2+ and then the sandwich-like Pt@Ni@Pt catalysts are formed. However, the island-like growth of the outer Pt is observed instead a layer-like one.
Methanol oxidation reaction (MOR) is carried out on the synthesized catalysts in alkaline media. It is found that that the electrochemical active surface area increasea with an increase in Pt content. We observe that not only Pt but also Ni can facilitate MOR via the water dissociation to form Ni(OH)2. From the measurements of X-ray absorption spectroscopy we found that the alloy extent of Pt and Ni increases with an increase Pt content. We also observed that CO oxidation reaction on Pt can be promoted by the help of Ni.. Therefore, the sandwich-like Pt@Ni@Pt catalysts can enhance the catalytic activity of MOR in an alkanie DMFC.

摘要 II Abstract IV 誌謝 V 目錄 VI 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 燃料電池之發展及趨勢 2 1.3 燃料電池種類及原理 3 1.3.1 PEMFC(Polymer Electrolyte Membrane Fuel Cell) 5 1.3.2 鹼性燃料電池AFC(Alkaline Fuel Cell) 8 1.3.3 磷酸鹽電解質燃料電池PAFC(Phosphoric Acid Fuel Cell) 9 1.3.4 熔融碳酸電解質燃料電池MCFC(Molten Carbonate FuelCell) 10 1.3.5 固態氧化物燃料電池SOFC(Solid Oxide Fuel Cell) 11 1.4 DMFC性能之衰退 12 1.4.1 陽極觸媒之衰退 13 1.4.2 陰極觸媒之衰退 15 1.5 研究動機及目的 17 第二章 文獻回顧 19 2.1 DMFC之觸媒材料 19 2.1.1 陽極觸媒材料 20 2.1.2 陰極觸媒材料 21 2.1.3 觸媒材料結構 22 2.1.4 觸媒材料的製備 27 2.2 微波合成之原理 36 2.3 電化學反應原理 37 2.3.1 循環伏安法 37 2.3.2 極化曲線 41 2.3.3 旋轉盤電極(Rotating Disc Electrode, RDE) 42 2.3.4 甲醇氧化(Methanol Oxidation) 45 2.3.4.1 甲醇氧化於鹼性溶液之影響因素 47 2.3.4.1.1 pH和甲醇濃度之影響 47 2.3.4.1.2 碳酸鹽之影響 48 2.3.4.1.3 溫度之影響 48 2.4 X光吸收光譜原理 50 2.4.1 EXAFS 50 2.4.2 XANES 55 2.4.3 數據分析 56 第三章 實驗設備與方法 61 3.1 實驗藥品與設備 61 3.1.1 實驗藥品 61 3.1.2 實驗設備 62 3.2 三層結構觸媒之製備 63 3.2.1 碳黑之前處理 63 3.2.2 以修飾Watanabe法製備Pt/C核點 64 3.2.3 以聯胺還原製備Pt@Ni/C 觸媒 65 3.2.4 以自身氧化還原之置換程序製備Pt@Ni@Pt/C觸媒 66 3.2.5 氫氣熱處理 68 3.3 材料鑑定與分析 69 3.3.1 觸媒成份分析 69 3.3.2 XRD分析 70 3.3.3 TEM分析 71 3.3.4 電化學特性分析 71 3.3.4.1 電極片製備 72 3.3.4.2 電化學量測 72 3.3.4.2.1 循環伏安法(Cylic voltammetries) 73 3.3.4.2.2 甲醇氧化-循環伏安(Methanol Oxidation Reaction) 73 3.3.4.2.3 CO剝除(CO Stripping) 74 3.3.5 X光吸收光譜 74 3.3.5.1 EXAFS之曲線適配 75 3.3.5.2 以X光吸收光譜分析觸媒結構 75 第四章 結果 80 4.1 觸媒結構及特性分析 80 4.1.1 觸媒成份分析 80 4.1.1.1 無Pt核點下以聯胺還原製備Ni/C觸媒 80 4.1.1.2 以Pt為核點製備Pt@Ni/C觸媒 81 4.1.1.3 以伽凡尼置換反應(galvanic replacement)製備Pt@Ni@Pt/C三明治結構觸媒 83 4.1.1.4 XANES之吸收係數 83 4.1.2 觸媒結構鑑定 84 4.1.2.1 X光繞射分析(XRD) 84 4.1.2.2 穿透式電子顯微鏡分析(TEM) 87 4.1.2.3 X光吸收近邊緣結構(XANES) 95 4.1.2.4 延伸X光吸收微細結構(EXAFS) 98 4.2 電化學特性量測結果 107 4.2.1 循環伏安 107 4.2.2 CO剝除(CO Stripping) 112 4.3 理論模擬計算 114 4.3.1 Pt(111)表面 114 4.3.2 電荷轉移(charge transfer) 114 第五章 綜合討論 114 5.1 以聯胺催化金屬還原方法之探討 114 5.2 三層結構觸媒對電化學效應之探討 114 5.2.1 Pt@Ni@Pt/C觸媒之電化學催化特性 114 第6章 第六章 結論與未來展望 114 參考文獻 114

1. Paganin V. A., “Modelistic interpretation of the impedance reponse of a polymer electrolyte fuel cell”, Electrochimica Acta, 1998, 43, 3761
2. 黃鎮江, “燃料電池”, 2005, 全華科技圖書出版
3. Carrette L., “Fuel Cells - Fundamentals and Applications”, Fuel Cells, 2001, 1, 5
4. www.celanese.com
5. Sundmacher K., “Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis”, Chem. Eng. Sci., 2001, 56, 333.
6. 鄭煜騰, 萬瑞霙, 林修正, 酸性燃料電池的製成研究,能源季刊 ,1995, 二十五卷第四期, 161
7. 林伸茂, “新能源時代的DMFC直接甲醇燃料電池原理、應用與實作”, 1996, 旗標出版公司出版
8. Haile S.M., “Fuel cell materials and components” , Acta Materialia , 2003, 51(19) , 5981-6000
9. Brosha E., “Direct Methanol Fuel Cells”, Hydrogen, Fuel Cells & Infrastructure Technologies Program 2004 Annual Review, 2004
10. Liu J., “Studies on performance degradation of a direct methanol fuel cell(DMFC) in life test”, Phys. Chem. Chem. Phys., 2004, 6, 134.
11. Piela P., “Ruthenium Crossover in Direct Methanol Fuel Cell with Pt-Ru Black Anode”, J. Electrochem. Soc., 2004, 151, A2053.
12. Sarma L. S., “Investigations of direct methanol fuel cell (DMFC) fading mechanisms”, J. Power Sources, 2007, 167, 358.
13. Brosha E., “Direct Methanol Fuel Cells”, Hydrogen, Fuel Cells & Infrastructure Technologies Program 2004 Annual Review, 2004
14. Ferreira P. J., “Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells”, Journal of The Electrochemical Society, 2005, 152, A2256.
15. Sarma L. S., “Investigations of direct methanol fuel cell (DMFC) fading mechanisms”, J. Power Sources, 2007, 167, 358.
16. Rauhe B. R., “Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate”, J Electrochem. Soc., 1995, 142, 1073.
17. Brankovic S. R., “Carbon monoxide oxidation on bare and Pt-modified Ru(1010) and Ru(0001) single crystal electrodes”, J. Electroanal. Chem., 2002, 532, 57.
18. Lu C., “UHV, Electrochemical NMR, and Electrochemical Studies of Platinum/Ruthenium Fuel Cell Catalysts”, J. Phys. Chem. B, 2002, 106, 9581.
19. Liu R., “Potential-Dependent Infrared Absorption Spectroscopy of Adsorbed CO and X-ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu, PtOs, PtRuOs, and Ru Electrodes”, J. Phys. Chem. B, 2000, 104, 3518.
20. Lin W. F., “Electrocatalytic Activity of Ru-Modified Pt(111) Electrodes toward CO Oxidation”, J. Phys. Chem. B, 1999, 103, 6968.
21. Shukla A. K., “Carbon-supported Pt–Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells”, J. Electroanal. Chem., 2004, 563, 181.
22. Beden B., “Electrocatalytic oxidation of methanol on platinum-based binary electrodes”, J. Electroanal. Chem., 1981, 127, 75.
23. Zhong C. J., “Core-Shell Assembled Nanoparticles as Catalysts”, Adv. Mater., 2001, 13, 1507.
24. Hamnett A., “Mechanism and electrocatalysis in the direct methanol fuel cell”, Catal. Today, 1997, 38, 445.
25. Page T., “A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS”, J. Electroanal. Chem., 2000, 485, 34
26. Mathiyarasu J., “Exploration of electrodeposited platinum alloy catalysts for methanol electro-oxidation in 0.5 M H2SO4: Pt-Ni system”, J.Solid State Electrochem., 2004, 8, 968
27. Park K., “Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation”, J. Phys. Chem. B, 2002, 106, 1869.
28. Choi J., “Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFCs”, J. Electrochem. Soc., 2003, 150, A973
29. Venkataraman R., “Development of New CO Tolerant Ternary Anode Catalysts for Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., 2003, 150, A278.
30. Ley K. L., “Methanol Oxidation on Single-Phase Pt-Ru-Os Ternary Alloys”, J. Electrochem. Soc., 1997, 144, A1543.
31. Shim, J., “Characteristics for electrocatalytic properties and hydrogen–oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell”, Electrochim. Acta., 2000, 45, 1943.
32. Mukerjee S., “Effect of Preparation Conditions of Pt Alloys on Their Electronic, Structural, and Electrocatalytic Activities for Oxygen Reduction-XRD, XAS, and Electrochemical Studies”, J. Phys. Chem., 1995, 99, 4577.
33. 葉晨聖, 化工資訊與商情, 2004, 7, 64
34. Wang Y., “Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures”, J. Phys. Chem. B, 1997, 101, 5301
35. Haus J. W., “Enhanced optical properties of metal coated nanoparticles”, J. Appl. Phys., 1993, 73, 1043
36. Jackson, J. B., “Silver nanoshells: variations in morphologies and optical properties”, J. Phys. Chem. B, 2001, 105, 2743
37. Westcott S. K., “Construction of simple gold nanoparticle aggregates with controlled plasmon plasmon interactions”, Chem. Phys. Lett., 1999, 300, 524
38. Oldenburg S. J., “Nano engineering of optical resonances”, Chem. Phys Lett., 1998, 288 , 243
39. Westcott S. L., ”Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces”, Langmuir, 1998, 14, 5396
40. Hofineister H., “Metal nanoparticle coating of oxide nanospheres for core-shell structures”, Part. Part. Syst. Charact., 2002, 19, 359
41. Mauik K., “Seed mediated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of “core-shell” type structures”, Nano Letters, 2001, 6, 319
42. Ng K. H., “Electrodeposition of silver-copper bimetallic particles having two archetypes by facilitated nucleation”, J. Electro. Anal.Chem., 2002, 522, 86
43. Gwak J. H., “Surface plasmon absorption characteristics and nonlinear optical properties of of silver/copper codoped silica thin films”, Nanostrctured. Mater., 1997, 8, 1149
44. Lin, J., “Gold-coated iron (Fe@Au)nanoparticles: synthesis, characterization, and magnetic field induced self-assembly”, J. Solid State Chem., 2001, 159, 26
45. Sershen S. R., “Temperature sensitive polymer-nanoshell composites for photothermally modulated drug delivery”, J. Biomed Mater. Res., 2002, 5, 293
46. 陳東煌, 化工資訊與商情, 2003, 3, 58
47. Chen D. H., “A simple Route for Formation of continuous Ni nanoshells on polymer microspheres”, Chem. Lett., 2003, 32, 662
48. Chen S., “Enhanced Activity for Oxygen Reduction Reaction on Pt3Co Nanoparticles: Direct Evidence of ercolated and Sandwich-Segregation Structure”, J. Am. Chem. Soc., 2008, 130, 3818
49. Stamenkovic V. R., “Effect of Surface Composition on Electronic Structure, Stability, and Electrocatalytic Properties of Pt-Transition Metal Alloys: Pt-Skin versus Pt-Skeleton Surfaces”, J. Am. Chem. Soc., 2006, 128, 8813
50. Ruban A. V., “Surface segregation energies in transition-metal alloys”, Phys. ReV. B, 1999, 59, 15990
51. Antolini E., “Formation of carbon supported PtRu alloys: an XRD analysis”, J. Alloys and Compounds, 2001, 315, 118
52. Takasu Y., “Effect of Structure of Carbon-Supported PtRu Electrocatalysts on the Electrochemical Oxidation of Methanol ”, J. Electrochem. Soc., 2000, 147, 4421.
53. Watanabe M., “Preparation of Highly Dispersed Pt+Ru Clusters and the Activity for the Electro-oxidation of Methanol” , J. Electrochem. Chem., 1987, 229, 395
54. Swathirajan S., “Electrochemical Oxidation of Methanol at Chemically Prepared Platinum-Ruthenium Alloy Electrodes”, J. Electrochem. Soc., 1991, 138, 1321
55. Vogel W., “ Structure and Chemical Composition of Surfactant-Stabilized PtRu Alloy Colloids’’, J. Phys. Chem. B , 1997, 101, 11029
56. Hwang B.J. “Probing the formation mechanism and chemical states of carbon-supported Pt-Ru nanoparticles by in situ X-ray absorption spectroscopy’’, J. Phys. Chem. B, 2006, 110, 6475
57. Liu Z., “Physical and Electrochemical Characterizations of Microwave -Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles’’, Langmuir , 2004, 20 , 181
58. Wang X., “ Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells’’, Electrochimica Acta , 2002, 47 , 2981
59. Bock C., “Size-Selected Synthesis of PtRu Nano-Catalysts: Reactionand Size Control Mechanism’’, J. Am. Chem. Soc., 2004, 126, 8028
60. Bidyut K. P., “ Microemulsion : An Overview’’, J.Dispersionscience and technology, 1997, 18, 301
61. Zhang X., “Water-in-Oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles,Their Characterization and Electrocatalystic Properties’’, Chem. Mater., 2003, 15, 451
62. Escudero M. J., “Development and performance characterisation of new electrocatalysts for PEMFC’’, J. Power Sources, 2002, 106, 206
63. Liu Z., “Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions’’, J. Mater. Chem., 2002, 12, 2453
64. Hamnett A., “Pt---Ru anodes for methanol electrooxidation: A ruthenium-99 Mössbauer study’’, J. Catalysis, 1990, 124, 30.
65. Ye F., “Carbon Nanotubes Supported Pt-Ru-Ni as MethanolElectro-Oxidation Catalyst for Direct Methanol Fuel Cells’’, J. Nat. Gas Chem., 2007, 16, 2
66. Zhang L., “Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell’’, Electrochemistry Communications, 2006, 8, 1625
67. Liuyang B., “Synthesis of nickel nanoparticles with uniform size via a modified hydrazine reduction route’’, Materials Letters, 2008, 62, 2267
68. Geng X., “Ni–Pt/C as anode electrocatalyst for a direct borohydride fuel cell’’, Journal of Power Sources, 2008, 185, 627
69. Marek G., “Pt-Catalyzed Formation of Ni Nanoshells on Carbon Nanotubes’’, Angew. Chem. Int. Ed., 2007, 46, 7026
70. Marek G., “Pt-Catalyzed Growth of Ni Nanoparticles in Aqueous CTAB Solution’’, Chem. Mater. 2008, 20, 5399
71. Kumbhar P.S., “Heterogeneous Catalysis in Fine Chemicals III”, Stud. Surf. Sci. Catal., 1993, 251
72. Deivaraj T. C., “Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol”, J. Mater. Chem., 2003, 13, 2555
73. Michael D., “Applications of microwave dielectric heating effects to synthetic problems in chemistry”, Chem. Soc. Rev., 1991, 20, 1
74. Gabriel C., “Dielectric parameters relevant to microwave dielectric heating”, Chem. Soc. Rev., 1998, 27, 213.
75. 彭文權, “以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒”, 化學工程學系,碩士, 1997.元智工學院
76. Tran T. D., “ Electrochemical Measurement of Platinum Surface Areas on Particulate Conductive supports”, Anal. Chem., 1993, 65, 1805.
77. Markovic´ N. M, “ Electrooxidation of CO and H2/CO Mixtures on Pt(111) in Acid Solutions”, J. Phys. Chem. B, 1999, 103, 487
78. 胡啟章, “電化學原理與方法” , 2002, 五南圖書出版公司
79. Lin Y. C., “ Combined Experimental and Theoretical Investigation of Nanosized Effects of Pt Cata;yst on Their Underlying Methanol Electro-Oxidation Activity”, J. Phys. Chem. C, 2009, 113, 9197
80. Eileen H. Y., “ A study of the anodic oxidation of methanol on Pt in alkaline solutions”, Journal of Electroanalytical Chemistry, 2003, 547, 17
81. Spendelow J. S., “Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media”, Phys. Chem. Chem. Phys., 2007, 9, 2654
82. Spendelow J. S., “Methanol Dehydrogenation and Oxidation on Pt(111) in Alkaline Solutions”, Langmuir, 2006, 22, 10457
83. Spendelow J. S., “Mechanism of CO Oxidation on Pt(111) in Alkaline Media”, J. Phys. Chem. B, 2006, 110, 9545
84. Tripkovic A. V., “Kinetic and mechanistic study of methanol oxidation on a Pt(100) surface in alkaline media”, J. Electroanal. Chem., 1998, 448, 173
85. Prabhuram J., “Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid”, J. Power Sources, 1998, 74, 54
86. Karichev Z. R., “Structural Characteristics of the Raney Nickel Promoted by a Platinum-Ruthenium Mixture and Its Electrocatalytic Activity in the Methanol Oxidation Reaction in Alkaline Media”, Russ. J. Electrochem., 2005, 41, 1265
87. Hwang, B. J., “ Structural Models and Atomic Distribution of Bimetallic Nanoparticles as Investigated by X-ray Absorption Spectroscopy”, J. Am. Chem. Soc., 2005, 127, 11140
88. Kirsten A., “Nucleation and Growth Mechanism of NixPt1–x Nanoparticles”, Adv. Funct. Mater. 2008, 18, 3850
89. Kuanping G., “Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction”, SCIENCE, 2009, 323, 6
90. Vanderbilt D., “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”. Physical Review B, 1990. 41, 7892
91. Payne M. C., “Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients”. Reviews of Modern Physics, 1992. 64, 1045
92. Perdew J. P., “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”. Physical Review B, 1992. 46, 6671
93. Blochl P. E., “Projector augmented-wave method”. Physical Review B, 1994. 50, 17953
94. Hu P., “Gradient corrections in density functional theory calculations for surfaces: Co on Pd{110}”, Chemical Physics Letters, 1994. 230, 501
95. Kresse G., “From ultrasoft pseudopotentials to the projector augmented-wave method”. Physical Review B - Condensed Matter and Materials Physics, 1999. 59, 1758
96. Ziesche P., “Electronic Structure of Solids”. 1991.
97. Kresse G., “Ab initio molecular dynamics for liquid metals”. Physical Review B, 1993. 47, 558
98. Kresse G., “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Physical Review B - Condensed Matter and Materials Physics, 1996. 54, 11169
99. Kresse G., “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”. Computational Materials Science, 1996. 6, 15
100. Balbuena P. B., “Adsorption and dissociation of H2O2 on Pt and Pt - Alloy clusters and surfaces”. Journal of Physical Chemistry B, 2006. 110, 17452
101. Gajdos M., “CO adsorption on close-packed transition and noble metal surfaces: Trends from ab initio calculations”. Journal of Physics Condensed Matter, 2004. 16, 1141
102. 洪建和, “聯氨浴化學鍍鎳反應行為及鍍浴穩定性之硏究”, 化學工程學系,碩士, 1993.台灣科技大學工學院
103 Gland J. L., “Vibrational characterization of adsorbed NH on the Ni(111) surface”, Chem. Phys. Lett. 1985, 119, 89
104. Andrzej K., “Nickel hydroxide electrocatalysts for alcohol oxidation reactions:An evaluation by infrared spectroscopy and electrochemical methods”, Catalysis Today, 1997, 38, 483

QR CODE