簡易檢索 / 詳目顯示

研究生: 王尉臣
Wei-chen Wang
論文名稱: 以低溫共燒陶瓷實現合成傳輸線及耦合器設計
A Study of Synthesized Transmission Lines on Low-temperature Co-fired Ceramic Process and its Miniaturized Coupler Designs
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 陳士元
none
曾昭雄
Chao-Hsiung Tseng
廖文照
Wen-Jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 82
中文關鍵詞: 低溫共燒陶瓷合成傳輸線直交分合波器180度分合波器返波方向耦合器
外文關鍵詞: low-temperature co-fired ceramic (LTCC), synthesized lines, quadrature coupler, rat-race coupler, back-wave directional coupler
相關次數: 點閱:395下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文進行以低溫共燒陶瓷(LTCC)實現合成傳輸線之研究,利用準集總元件近似傳統均勻傳輸線的概念,並結合高介電常數及多層板特性之低溫共燒陶瓷製程,提出三款新型合成微型化微波電路。本論文將針對微波電路之設計概念、分析原理、等效集總電路模型、模擬與實測之電路響應作詳細探討。
    本論文首先提出低溫共燒陶瓷實現之合成傳輸線,並利用該合成傳輸線設計出兩款分合波器-直交分合波器及180度分合波器,針對兩款微波電路之電氣響應作實測與模擬之差異探討且表列與文獻記載中各項微型化設計之比較。
    此外,本論文亦提出一款微型化返波方向耦合器,此設計之互感及互容主要由相互纏繞之螺旋電感及寬面耦合貢獻,與傳統與文獻記載之方向耦合器比較僅占極小之電路面積,針對此返波方向耦合器設計,本論文亦有詳細表列與比較分析。


    A study on miniaturized microwave circuit designs is performed in this thesis. In conjunction with the low-temperature co-fired ceramic (LTCC) process, synthesized microwave circuits with size miniaturization are realized by utilizing the quasi-lump element approach to electrically approximate a conventional transmission line. The design concept, analysis principle, equivalent lumped circuit model, and the electric characteristics are discussed in detail.
    Using the multilayered synthesized lines on LTCC, we develop two hybrid coupler, a quadrature coupler and a rat-race coupler, in this thesis. The experimental results are analyzed and the discrepancy between the simulation and measurement is explained. A performance summary and comparison table is provided for each miniaturized coupler.
    We also propose a miniaturized 3-dB back-wave directional coupler. The required mutual inductance and mutual capacitance are realized by spiral inductors and broadside coupled lines, respectively. It occupies an extremely compact circuit area when compared with the previous ones in the literature. A comparison table to validate its performance over others is also discussed.

    目錄 摘要 Abstract 目錄 第一章 緒論 1.1研究動機 1.2文獻探討 1.3論文架構 第二章 低溫共燒陶瓷人工合成傳輸線設計原理 2.1 前言 2.2 低溫共燒陶瓷製程簡介 2.3 以低溫共燒陶瓷製程實現人工合成傳輸線 2.3.1 50歐姆人工合成傳輸線電路佈局與設計原理 2.3.2 50歐姆人工合成傳輸線等效結果與討論 2.3.3 35歐姆及70歐姆人工合成傳輸線 2.4 結語 第三章 微型化分合波器 3.1 前言 3.2 微型化之直交分合波器 3.2.1 電路佈局與設計原理 3.2.2 實驗結果與討論 3.3 微型化之180度分合波器 3.3.1 電路佈局與設計原理 3.3.2 實驗結果與討論 3.4 結語 第四章 微型化方向耦合器 4.1 前言 4.2微型化方向耦合器 4.2.1電路佈局與設計原理 4.2.2實驗結果與討論 4.3結語. 第五章 結論 5.1總結 5.2未來工作 參考文獻

    [1]C.-W. Wang ,T.-G. Ma, and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2792 - 2801, Dec. 2007
    [2] T.-G. Ma, C.-W. Wang, R.-C. Hua, and J.-W. Tsai, “A modified quasi-Yagi antenna with a new compact microstrip-to-coplanar strip transition using artificial transmission lines,” IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2469 - 2474, Aug. 2009
    [3] I. Toyota, T. Hirota, T. Hiraoka, and T. Tokumitsu, “Multilayer MMIC branch-line coupler and broad-side coupler,” Microwave and Millimeter-Wave Monolithic Circuits symp. Dig., Albuquerque NM, pp.79-82, Jun. 1992.
    [4] Y.-C. Chiang, and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 476–479, Mar. 2001.
    [5] T.-G. Ma, and Y.-T. Cheng, “A miniaturized multilayered marchand balun using coupled artificial transmission lines," IEEE Microw. Wirel. Compon. Lett., vol. 19, no. 7, pp. 446-448, Jul. 2009.
    [6] K.W. Eccleston, and S.H.M. Ong, “Compact planar microstripline branch-line and rat-race couplers,” IEEE Trans. Microw. Theory Tech. , vol. 51, no. 10, pp. 2119- 2125, Oct. 2003.
    [7] P. Kangaslahti, P. Alinikula, V. Porra, “Miniaturized artificial-transmission-line monolithic millimeter-wave frequency doubler,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 4, pp. 510-518, Apr. 2000.
    [8] V. Napijalo, and B. Kearns, “Multilayer 180° coupled line hybrid coupler,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2525-2535, Nov. 2008.
    [9] T.-M. Shen, T.-Y. Huang, C.-F. Chen, and R.-B. Wu, “A laminated waveguide magic-T with bandpass filter response in multilayer LTCC,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 3, pp. 584-592, Mar. 2011.
    [10] K. Huang, and T. Chiu, “LTCC wideband filter design with selectivity enhancement,” IEEE Microw. Wirel. Compon. Lett., vol. 19, no. 7, pp. 452-454, Jul. 2009.
    [11] L. Li, “Embedded passives in organic substrate for RF module and assembly characterization,” in Proc. High Density Microsystem Design and Packaging and Component Failure Analysis, pp. 74- 82, Jul. 2004.
    [12] H. H. Ta, and A.-V. Pham, “Development of a compact broadband folded hybrid coupler on multilayer organic substrate,” IEEE Microw. Wirel. Compon. Lett., vol. 20, no. 2, pp. 76-78, Feb. 2010.
    [13] Q. Zhu, and S.-J. Xu, “Composite right/left handed transmission line metamaterials and applications,” in Proc. 2008 International Workshop on Metamaterials, pp. 72-75, Nov. 2008.
    [14] I-H. Lin, C. Caloz, and T. Itoh, “A branch-line coupler with two arbitrary operating frequencies using left-handed transmission lines,” in Proc. 2003 IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 325- 328, Jun. 2003.
    [15] H. Okabe, C. Caloz, and T. Itoh, “A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section,” IEEE Trans. Microw.Theory Tech., vol. 52, no. 3, pp. 798- 804, Mar. 2004.
    [16] J.-W. Tsai, C. H. Wu, and T.-G. Ma, “Novel dual-mode retro-directive antenna array using synthesized microstrip lines,” IEEE Trans. Microw.Theory Tech., vol. 59, no. 12, pp. 3375-3388, Dec. 2011.
    [17] J.-W. Tsai, and T.-G. Ma, “Compact dual-mode four-port network with quadrature-coupling and direct-thru transmission in each of the individual bands,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, Jun. 2011.
    [18] W. R. Eisenstadt and Y. Eo, “ |S|-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Compon., Hybrids, Manuf. Tech., vol. 15, no. 4, pp. 483–490, Aug. 1992.
    [19] T.-N. Kuo, Y.-S. Lin, C.-H. Wang, and C.-H. Chen, “A compact LTCC branch-line coupler using modified-T equivalent-circuit modelfor transmission line," IEEE Microw. Wirel. Compon. Lett., vol. 16, no. 2, pp. 90-92, Feb. 2006.
    [20] H.-C. Lu, Y.-L. Kuo, P.-S. Huang, and Y.-L. Chang, “Dual-band CRLH branch-line coupler in LTCC by lump elements with parasite control,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, May 2010.
    [21] G. Brzezina, and L. Roy “A miniature lumped element LTCC quadrature hybrid coupler for GPS applications,” in IEEE AP-S Trans. Antennas Propag. society Int. Symp., San Diego, CA, Jul. 2008.
    [22] E.Loskot, S.Leppavuori, A.Kourbanov, I.Vendik, A.Lapshin, and E.Jakku “A miniaturized branch-line directional coupler on low temperature cofired ceramic board,” in 31st European Microwave Conference, pp.1-4, London, England, Sep. 2001
    [23] T. Baras and A. F. Jacob “Multilayer-integration of wideband LTCC image rejection mixers at K-band,” in German Microwave Conference, pp.89-89, Berlin, Mar. 2010
    [24] B. Zhou and W.X. Sheng “Broadband and miniaturised LTCC quadrature hybrid using stacked multi-section structure,” Electronics Letters, Vol. 48 , Issue 4, pp. 220 - 221, Feb. 2012
    [25] C.-H. Tseng, “Compact LTCC rat-race couplers using multilayered phase-delay and phase-advance T-equivalent Sections,” IEEE Transactions on Advanced Packaging, vol. 33, no. 2, pp. 543-551, May 2010.
    [26] T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Multilayer 180° hybrid in LTCC,” in APMC 2008, Macau, Dec. 2008
    [27] T.-M. Shen, C.-C. Chen, T.-Y. Huang, and R.-B. Wu, “Multilayer 180° hybrid in LTCC,” in APMC 2009, Singapore, Dec. 2009.
    [28] R. Perrone, P. Kapitanova, D. Kholodnyak, I. Vendik, S. Humbla, M. Hein, and J. Muller “Miniaturisation of a LTCC high-frequency rat-race-ring by using 3-dimensional integrated passives and embedded high-k capacitors,” in EMPC 2009, pp. 1 - 6, Rimini, Jun. 2009
    [29] D. Kholodnyak, P. Kapitaniva, S. Humbla , R. Perrone, J. Mueller, M. A. Hein, and I. Vendik “180° power dividers using metamaterial transmission lines,”in COMITE 2008 , pp. 1 - 4, Prague, Apr. 2008
    [30] A. Sawicki, and K. Sachse, “Novel coupled-line conductor-backed coplanar and microstrip directional couplers for PCB and LTCC applications," IEEE Trans. Microw. Theory Tech., vol. 51, no. 6, pp.1743-1751, Jun. 2003.
    [31] Y. S. Noh, M.S. Uhm and I. B. Yom, “LTCC Broadside coupler design with branch lines for enhanced performances," in IEEE/MTT-S International Microwave Symp., pp. 1015-1018, Honolulu, HI, Jun. 2007.
    [32] N. Belambri, D. Dubouil, C. Talbot, A. B. Kouki, and F. Gagnon, “Design of a buried hybrid coupler for wudeband applications using LTCC technology," in CCECE, pp. 1101-1104, Niagara Falls, ON, May. 2011.
    [33]V. Piatnitsa, D. Kholodnyak, P. Kapitanova, I. Fischuk, T. Tick, J. Jantti, H. Jantunen, and I. Vendik “Right/left-handed transmission line LTCC directional couplers,” in Microwave Conference, pp. 636 - 639 , Munich, Oct. 2007
    [34] P. Kapitanova, P. Turalchuk, I. Fischuk, A. Simine, D. Kholodnyak, and I. Vendik “Design of quasi-lumped-element filters and directional couplers using multilayer technologies,”in MIKON 2006, pp. 604 - 607, Krakow, May 2006.
    [35] P. Turalchuk, I. Munina, P. Kapitanova, D. Kholodnyak, D. Stoepel, S. Humbla, J. Mueller, M.A. Hein, and I. Vendik “Broadband small-size LTCC directional couplers,” in 2010 EuMC , pp. 1162 - 1165, Paris, Sep. 2010.
    [36] Y. Fujiki, H. Mandai, T. Morikawa “Chip type spiral broadside coupled directional couplers and baluns using low temperature co-fired ceramic,”in Electronic Components and Technology Conference, pp. 105 - 110 , San Diego, CA, 1999
    [37] C. Morena-Alvarez-Palencia, M. Burgos-Garcia, J. Gismero-Menoyo “Contribution of LTCC technology to the miniaturization of six-port networks,” in 2011 EuMC , pp. 659 - 662, Manchester, Oct. 2011
    [38] Y.-S. Dai, Y.-L. Lu, Q.-S. Luo, B.-Z. Zhan, X. Wang, Y.-B. Jiang.“A microminiature 3dB multilayer double-octave hybrid coupler using LTCC,” in APMC 2005, vol.1 , Dec. 2005

    QR CODE