簡易檢索 / 詳目顯示

研究生: 楊惇安
Tun-An Yang
論文名稱: 混凝土強度預測暨最佳化經濟性配比模式之研究
Modeling Concrete Strength and Optimization of Economical Concrete Ingredients
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 黃兆龍
Chao-Lung Hwang
吳育偉
Yu-Wei Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 88
中文關鍵詞: 混凝土強度預測最佳化配比SOS-LSSVM
外文關鍵詞: Concrete strength prediction, concrete component design, SOS-LSSVM
相關次數: 點閱:211下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

混凝土廣泛應用在各種營建結構體中。隨著材料安全性、結構耐久性、施工工作性、經濟性以及生態性等不同需求,而發展出HPC、SCC、RCA等不同類型混凝土。目前混凝土相關研究以透過多次試驗,變更配比設計來改變混凝土性質,以達到強度要求,此法為目前最有效的方式;然而在混凝土強度預測一直缺乏一套準確的方法,過去多以實驗試誤法或是經驗法為主,經驗法易造成誤差過大,試誤法則是耗時費力且成本過高。再者,混凝土配比設計除了考量強度、工作度外,經濟性配比亦是一重要影響因素,因此如何發展一套準確的混凝土強度預測模式,進而推論最佳化經濟性配比,有效預測混凝土配比強度,降低生產成本,為目前混凝土研究之重要課題之一。
本研究首先建立HPC、SCC以及RCA案例資料庫,以人工智慧SOS-LSSVM演算法,發展混凝土抗壓強度預測模式(Concrete Compressive Strength Prediction Model, CCSPM)與最佳化經濟性配比模式(Otimaization of Economical Concrete Ingredient Model, OECIM)。CCSPM藉由案例訓練學習,求得不同混凝土配比與抗壓強度間之映射關係,用以預測不同混凝土配比之抗壓強度;OECIM則結合CCSPM,搜尋強度符合要求之最經濟性配比。再者,透過不同AI強度預測模式比較,驗證本研究建所建立之預測模式,在準確性與相關性上,皆優於其他模式。此外,本研究檢核最佳化經濟性配比之輸出,其結果不僅強度滿足需求,各別材料之比率也符合傳統配比方法要求,且誤差在合理範圍內,而模式求得之配比成本亦與目前市價相當。


Concrete is widely used in a variety of building structures, and derived from various types. The more the manufacturing brings the more waste. Using recycled crushed concrete as aggregate in new concrete structures can improve the sustainability of the concrete industry in which recycling of material is counted as one of the most effective factors.
Accurate early estimation of concrete compressive strength can save time and cost for designers and structural engineers. However, the relationship between the compressive strength and concrete mixtures is highly nonlinear making it difficult to model the compressive strength, and optimal concrete aggregate is an multiple and complex problems. Very few studies have examined the appropriate and efficient approach to handle the collection of historical database. In addition, there has been few research study about optimail concrete mix design considering economics aspect at the same time.
This research established two model by using Symbiotic Organisms Search - Least Squares Support Machine (SOS-LSSVM) Algorithm, whitch is Concrete Compressive Strength Prediting Model and Optimal Concrete Ingredients Model. Try to provide accurate strength prediction model, and make the design of the new reference direction.

目錄 摘要 錯誤! 尚未定義書籤。 Abstract III 致謝 V 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究流程與架構 4 第二章 文獻回顧 6 2.1混凝土的組成及力學性質 7 2.1.1高性能混凝土 7 2.1.2自充填混凝土 8 2.1.3再生粒料混凝土 9 2.2 ACI配比 13 2.2.1配比設計基本過程 13 2.2.2 ACI配比設計步驟 14 2.2.3 DMDA配比設計步驟 17 2.3混凝土強度預測模式相關文獻 18 2.4 Artificial Intelligence人工智慧 22 2.4.1支持向量機(SVM) 22 2.4.2 最小平方差支持向量機(Least Squares-SVM) 24 2.4.3 演化式支持向量機(ESIM) 27 2.4.4 演化式最小平方差支持向量機ELSIM 28 2.4.5生物共生演算法(Symbiotic Organisms Search)SOS 29 2.4.6生物共生演算法最小平方差支持向量機(SOS-LSSVM) 32 2.4.7 SOS-LSSVM 之特性與限制 35 第三章 混凝土強度預測暨最佳化經濟性配比模式 37 3.1模型架構 37 3.2模式流程 39 第四章 混凝土強度預測模型 42 4.1混凝土抗壓強度推論模式流程 42 4.2確認混凝土抗壓強度影響因子 43 4.3蒐集混凝土抗壓強度,建立案例庫 43 4.4混凝土抗壓強度預測模式建立 48 4.5混凝土抗壓強度預測模式結果 51 4.6混凝土抗壓強度預測不同模式比較 54 4.7混凝土抗壓強度預測模式GUI介面 57 第五章 最佳化混凝土經濟性配比模式 58 5.1模式流程 58 5.2適存值目標函數設定 60 5.4模式運算結果 64 5.5混凝土最佳化經濟性配比模式GUI介面 70 第六章 結論與建議 71 6.1回顧研究目的 71 6.2研究成果 71 6.3結論 72 6.4建議 73 參考文獻 73 Matlab程式碼 77 表目錄 表 2. 1各國應用再生混凝土情況 12 表 2. 2建築廢棄物之組成 13 表 2. 3相關論文整理 21 表 4. 1 HPC影響因子 44 表 4. 2 SCC影響因子 45 表 4. 3 RCA影響因子 46 表 4. 4 HPC抗壓強度預測模式案例庫 47 表 4. 5 SCC抗壓強度預測模式案例庫 47 表 4. 6 RCA抗壓強度預測模式案例庫 47 表 4. 7案例分組示意 48 表 4. 8 MAPE評估指標 49 表 4. 9相關係數評估指標 50 表 4. 10 HPC抗壓強度預測模式訓練與測試結果 52 表 4. 11 SCC抗壓強度預測模式訓練與測試結果 53 表 4. 12 RCA抗壓強度預測模式訓練與測試結果 53 表 4. 13 HPC混凝土抗壓強度預測模式不同模組比較結果 54 表 4. 14 SCC混凝土抗壓強度預測模式不同模組比較結果 55 表 4. 15 RCA混凝土抗壓強度預測模式不同模組比較結果 55 表 5. 1混凝土材料單價與比重 64 表 5. 2 HPC最佳化經濟性配比模式結果 66 表 5. 3 SCC最佳化經濟性配比模式結果 66 表 5. 4 RCA最佳化經濟性配比模式結果 67 圖目錄 圖 1. 1研究流程圖 4 圖 2. 1可容錯線性SVR模式 23 圖 2. 2演化式支持向量機推論模式流程圖 27 圖 2. 3差分進化演算法流程圖 28 圖 2. 4演化式最小平方差支持向量機流程圖 29 圖 2. 5生物在自然界中三中共生例子 30 圖 2. 6生物共生演算法(SOS)流程圖 31 圖 2. 7 SOS-LSSVM模式架構 33 圖 3. 1混凝土抗壓強度暨最佳化經濟性配比模式流程圖 38 圖 3. 2 SOS-LSSVM mapping process 41 圖 4. 1混凝土抗壓強度推論模式流程圖 42 圖 4. 2 HPC驗證組實際預測散佈圖 52 圖 4. 3 RCC GUI操作截圖 57 圖 5. 1混凝土最佳化經濟性配比模式 58 圖 5. 2 HPC最佳化經濟性配比模式收斂圖 68 圖 5. 3 SCC最佳化經濟性配比模式收斂圖 69 圖 5. 4 RCA最佳化經濟性配比模式收斂圖 69 圖 5. 5 混凝土最佳化經濟性配比模式GUI操作介面 70

[1] 黃兆龍, "混凝土性質與行為, 台北, 詹氏書局," 1999.
[2] 劉文良, "營建廢棄物之混凝土塊再利用於自然生態工法之研究," 2004.
[3] M. Nehdi, S. Mindess, and P.-C. Aïtcin, "Optimization of high strength limestone filler cement mortars," Cement and Concrete Research, vol. 26, no. 6, pp. 883-893, 1996.
[4] P. Domone and M. Soutsos, "Approach to the proportioning of high-strength concrete mixes," Concrete international, vol. 16, no. 10, pp. 26-31, 1994.
[5] M.-Y. Cheng and M.-T. Cao, "Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams," Engineering Applications of Artificial Intelligence, vol. 28, pp. 86-96, 2014.
[6] M.-Y. Cheng, P. M. Firdausi, and D. Prayogo, "High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)," Engineering Applications of Artificial Intelligence, vol. 29, pp. 104-113, 2014.
[7] M.-Y. Cheng, N.-D. Hoang, and Y.-W. Wu, "Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study," Automation in Construction, vol. 35, pp. 306-313, 2013.
[8] M.-Y. Cheng and A. F. Roy, "Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines," International Journal of Project Management, vol. 29, no. 1, pp. 56-65, 2011.
[9] M.-Y. Cheng, D. K. Wibowo, D. Prayogo, and A. F. Roy, "Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model," Journal of Civil Engineering and Management, vol. 21, no. 7, pp. 881-892, 2015.
[10] M.-Y. Cheng and Y.-W. Wu, "Evolutionary support vector machine inference system for construction management," Automation in Construction, vol. 18, no. 5, pp. 597-604, 2009.
[11] D. Prayogo, "A Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete," Department of Construction Engineering, National Taiwan University of Science and Technology, Taiwan, 2012.
[12] J. Kasperkiewicz, J. Racz, and A. Dubrawski, "HPC strength prediction using artificial neural network," Journal of Computing in Civil Engineering, vol. 9, no. 4, pp. 279-284, 1995.
[13] A. Abbasi, M. Ahmad, and M. Wasin, "Optimization of concrete mis proportioning using reduced factorial experimental technique," Materials Journal, vol. 84, no. 1, pp. 55-63, 1987.
[14] 謝宗憲, "自充填混凝土預力梁之剪力行為," 中興大學土木工程學系所學位論文, pp. 1-158, 2007.
[15] R. Siddique, "Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete," Cement and Concrete research, vol. 33, no. 4, pp. 539-547, 2003.
[16] P. Bamforth, "IN SITU MEASUREMENT OF THE EFFECT OF PARTIAL PORTLAND CEMENT REPLACEMENT USING EITHER FLY ASH OR GROUND GRANULATED BLAST-FURNACE SLAG ON THE PERFORMANCE OF MASS CONCRETE," Proceedings of the Institution of Civil Engineers, vol. 69, no. 3, pp. 777-800, 1980.
[17] 林炳炎, 飛灰. 矽灰. 高爐爐石用在混凝土中. 林炳炎出版, 1993.
[18] 陳聖達, "化學摻料對混凝土材料性質的影響," 1996.
[19] E. Lauritzen, "Recycling concrete-an overview of challenges and opportunities," Special Publication, vol. 219, pp. 1-10, 2004.
[20] 杜宗嶽, "永續性再生資源骨材混凝土之研究," 2005.
[21] 吳漢儒, "黃氏富勒緻密配比設計法應用於高性能再生粒料混凝土性質之研究," 2005.
[22] 鄭永發. (2010). 利用不同類神經網路預測輕質混凝土強度最佳化之研究.
[23] M. Sonebi, L. Svermova, and P. J. Bartos, "Factorial design of cement slurries containing limestone powder for self-consolidating slurry-infiltrated fiber concrete," Materials Journal, vol. 101, no. 2, pp. 136-145, 2004.
[24] 劉原旭, "高性能混凝土最佳化配比設計方法之研究," 2005.
[25] 陳昱翰, "應用遺傳程式於推估高性能混凝土抗壓強度之研究," 2008.
[26] 彭建華, "以演化運算樹建構混凝土強度模型," 2010.
[27] 蔡家盛, "進化演算法於混凝土抗壓強度預測之研究," 2003.
[28] D. E. Goldberg, K. Deb, H. Kargupta, and G. R. Harik, "RapidAccurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms," in ICGA, 1993, vol. 5, pp. 56-64.
[29] M.-Y. Cheng and N.-D. Hoang, "Risk score inference for bridge maintenance project using evolutionary fuzzy least squares support vector machine," Journal of Computing in Civil Engineering, vol. 28, no. 3, p. 04014003, 2012.
[30] J. Ronkkonen, S. Kukkonen, and K. V. Price, "Real-parameter optimization with differential evolution," in Evolutionary Computation, 2005. The 2005 IEEE Congress on, 2005, vol. 1, pp. 506-513: IEEE.
[31] R. Storn and K. Price, "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces," Journal of global optimization, vol. 11, no. 4, pp. 341-359, 1997.
[32] M.-Y. Cheng and D. Prayogo, "Symbiotic organisms search: a new metaheuristic optimization algorithm," Computers & Structures, vol. 139, pp. 98-112, 2014.
[33] M.-Y. Cheng et al., "SOS optimization model for bridge life cycle risk evaluation and maintenance strategies," Journal of the Chinese Institute of Civil and Hydraulic Engineering Volume 26, no. 4, 2014.
[34] M.-Y. Cheng, D. Prayogo, and D.-H. Tran, "Optimizing multiple-resources leveling in multiple projects using discrete symbiotic organisms search," Journal of Computing in Civil Engineering, vol. 30, no. 3, p. 04015036, 2015.
[35] G. G. Tejani, V. J. Savsani, and V. K. Patel, "Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization," Journal of Computational Design and Engineering, vol. 3, no. 3, pp. 226-249, 2016.
[36] M.-Y. Cheng, D. Prayogo, and Y.-W. Wu, "Predicting the Pavement Rutting Behavior of Asphalt Mixtures Using Symbiotic Organisms Search-Least Squares Support Vector Machine Inference Model," Construction and Building Materials.

QR CODE