簡易檢索 / 詳目顯示

研究生: 顏駿宏
Jyun-Hong Yan
論文名稱: 利用正交解碼結合脈衝反相及哈達瑪多重編碼發射序列進行超音波對比劑偵測及諧波抑制
Contrast-Agent Detection Using Orthogonal Decoding With Pulse-Inversion and Hadamard-Encoded Multi-Pulses (HEM) for Harmonic Suppression
指導教授: 沈哲州
Che-Chou Shen
口試委員: 李百祺
Pai-Chi Li
郭柏齡
Po-Ling Kuo
廖愛禾
Ai-Ho Liao
沈哲州
Che-Chou Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 哈達瑪多重發射序列超音波對比劑諧波抑制脈衝反相正交解碼對比劑影像
外文關鍵詞: Hadamard-encoded multi-pulses (HEM), ultrasound contrast agent, contrast-to-tissue ratio, harmonic suppression, orthogonal decoding, pulse inversion
相關次數: 點閱:239下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來哈達瑪( Hadamard )多重編碼發射序列已經被用來提升對比劑影像之contrast-to-tissue ratio (CTR),其中二次諧波的干擾所造成的背景殘餘信號是影響對比劑影像偵測的主因,雖然理論上高階哈達瑪多重編碼發射序列在解碼過程中能有條件地完整移除二階諧波信號,但發射編碼波形若受記憶效應影響,當前位元波形會受前級位元波形影響,導致發射波形拉長及失真,而該受記憶效應影響之失真波形經非線性傳遞後,其二次諧波成分將無法完整地被移除,導致其組織抑制能力受限。本篇論文採用四階哈達瑪矩陣構建發射序列,在解碼後根據選擇的解碼序列進行平移相消法可得到SH1、SH1、SH3三種組織抑制方法,其中以SH3之效果最佳;哈達瑪矩陣同時也可構建格雷正交式編碼對,而為了抑制二次諧波及記憶效應的干擾我們將正交解碼結合脈衝反相並將此法法稱做PIHS-OD,其中PIHS-OD能有效地抑制記憶效應。實驗採用水聽筒及B-mode影像進行驗證。結果方面以單一脈衝及脈衝反相之振幅調變方法( PIAM )做為本論文之CTR比較基準,其中正交解碼中最好的方法PIHS-OD相對於SH3其CTR高出約5.4 dB。


    Hadamard-encoded multi-pulses (HEM) transmit has recently been utilized for tissue background suppression in ultrasound contrast imaging to enhance contrast-to-tissue ratio (CTR). Nonetheless, second harmonic component in HEM transmit results in residual tissue background after decoding and thus compromises detection of contrast microbubbles. Theoretically, high-order HEM transmit can produce harmonic-free background but the memory effect which considers the nonlinear contribution of previous bit waveform into next one in the progress of harmonic generation may limit the achievable tissue suppression. In this study, three possible harmonic-free pairs using time-shifted subtraction (SH1, SH2 and SH3) in the fourth-order Hadamard decoding are analyzed and experimentally compared using hydrophone measurement and B-mode imaging. Moreover, orthogonal decoding of HEM transmit is also proposed with pulse-inversion harmonic suppression (PIHS) to remedy memory effect on tissue background. Results shows that SH3, which utilizes the third and the fourth rows for decoding, provides the lowest magnitude of tissue background among all possible decoding pairs and performs comparably to the reference pulse inversion and amplitude modulation (PIAM) sequence in terms of CTR. For PIHS orthogonal decoding, the pulse subtraction effectively removes the harmonic interferences from memory effect and thus further improves the CTR by 5.4 dB compared to SH3.

    第一章 緒論 1 1-1 超音波成像原理 1 1-2 超音波對比劑成像原理 3 1-2-1 對比劑特性 3 1-2-2 組織之非線性響應 4 1-2-3 微氣泡對比劑之非線性響應 8 1-2-4 線性及非線性成像 11 1-3 線性/非線性信號之分離 12 1-3-1 脈衝反相(PI) 12 1-4 對比劑影像偵測技術 15 1-4-1振幅調變(AM) 15 1-4-2 脈衝反相之振幅調變(PIAM) 16 1-4-3 Super-Harmonic 18 1-4-4 Sub-Harmonic/Ultra-Harmonic 19 第二章 研究原理 20 2-1 編碼波形 20 2-1-1 格雷編碼原理與特性 21 2-1-2 記憶效應 23 2-1-3 使用Hadamard矩陣構建格雷編碼 25 2-2 HADAMARD構建之多重發射序列(HEM) 26 2-2-1 HEM用於組織抑制 26 2-2-2 二次諧波對HEM組織抑制之影響 27 2-2-3 記憶效應對HEM組織抑制之影響 29 2-3 正交格雷編碼 32 2-3-1 線性及二次諧波對正交格雷解碼組織抑制之影響 32 2-3-2 正交解碼結合脈衝反相進行諧波抑制 34 2-3-3 記憶效應對正交解碼之影響 36 第三章 研究方法 37 3-1 模擬設置 37 3-1-1 KZK組織信號模擬 37 3-2 實驗設置 38 3-2-1 水聽筒實驗 38 3-2-2 B-mode影像實驗 39 第四章 研究結果 41 4-1 HEM組織抑制結果 41 4-1-1 HEM組織抑制KZK模擬 41 4-1-2 HEM組織抑制—水聽筒實驗 42 4-1-3 HEM組織抑制—B-mode影像實驗 43 4-2 正交解碼之組織抑制結果 46 4-2-1 正交解碼組織抑制KZK模擬 46 4-2-2 正交解碼組織抑制—水聽筒實驗 47 4-2-3 正交解碼組織抑制—B-mode影像實驗 48 4-3 HEM與正交解碼之組織抑制能力比較 51 4-3-1 KZK模擬比較 51 4-3-2 水聽筒實驗比較 52 4-3-3 B-mode影像實驗比較 52 第五章 討論、結論與未來工作 55 5-1 討論與結論 55 5-2 未來工作 58 參考資料 59

    [1] 沈哲州,醫用超音波講義,國立臺灣科技大學,臺北(2013)。
    [2] P. H. Chang, K. K. Shung, and H. B. Levene, “Quantitative measurements of second harmonic Doppler using ultrasound contrast agents,” Ultrasound Med. Biol. vol. 22, no. 9, pp. 1205–1214, 1996.
    [3] 對比劑影像示意圖,資料來源:http://www.toshibamedical.eu/au/products/ul/aplio-300/applications/
    [4] M. E. Haran and B. D. Cook, “Distortion of finite amplitude ultrasound in lossy media,” J. Acoust. Soc. Amer. vol. 73, pp. 774–779, 1983.
    [5] M. F. Hamilton and D. T. Blackstock, Nonlinear acoustics, New York, Academic, 1998.
    [6] F. A. Duck, “Nonlinear acoustics in diagnostic ultrasound,” Ultrasound Med. Biol. vol. 28, no. 1, pp. 1–18, 2002.
    [7] N. de Jong and F. J. Ten Cate, “New ultrasound contrast agents and technological innovations,” Ultrasonics. vol. 34, no. 2-5, pp. 587–590, 1996.
    [8] W. T. Shi and F. Forsberg, “Ultrasonic characterization of the nonlinear properties of contrast microbubbles,” Ultrasound Med. Biol. vol. 26, no. 1, pp. 93–104, 2000.
    [9] D. H. Simpson, C. T. Chin, and P. N. Burns, “Pulse inversion Doppler: A new method for detecting nonlinear echoes from microbubble contrast agents,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 2, pp. 372–382, 1999.

    [10] B. B. Goldberg, J. B. Liu, and F. Forsberg, “Ultrasound contrast agents: A review,” Ultrasound Med. Biol. vol. 20, no. 4, pp. 319–333, 1994.
    [11] P. C. Li, C. C. Shen and S. W. Huang, “Waveform design for ultrasonic pulse-inversion fundamental imaging,” Ultrason Imaging. vol. 28, no. 3, pp. 129–143, 2006.
    [12] C. A. Cain, “Ultrasonic reflection mode imaging of the nonlinear parameter B/A I: A theoretical basis,” J. Acoust. Soc. Amer. vol. 80, pp. 28–32, 1986.
    [13] J. Ophir and K. J. Parker, “Contrast agents in diagnostic ultrasound,” Ultrasound Med. Biol. vol. 15, no. 4, pp.319–333, 1989.
    [14] F. Tranquart, N. Grenier, and V. E. L. Pourcelot, “Clinical use of ultrasound tissue harmonic imaging,” Ultrasound Med. Biol. vol. 25, no. 6, pp. 889–894, 1999.
    [15] T. S. Desser and R. B. Jeffrey, “Tissue harmonic imaging techniques: Physical principles and clinical applications,” Seminars in Ultrasound CT and MRI, vol. 22, no. 1, pp. 1–10, 2001.
    [16] S. Krishnan, J. D. Hamilton, and M. O’Donnell, “Suppression of propagating second harmonic in ultrasound contrast imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol. 45, no. 3, pp. 704–711, 1998.
    [17] T. Christopher, “Source prebiasing for improved second harmonic bubble-response imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol. 46, no. 3, pp. 556–563, 1999.

    [18] R. J. Eckersley, C. T. Chin and P. N. Burns, “Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power,” Ultrasound Med. Biol. vol. 31, no. 2, pp. 213–219, 2005.
    [19] A. Guiroy, A. Novell, E. Ringgaard, R. Lou-Moeller, J.M. Gregoire, A. Abellard, T. Zawada, A. Bouakaz and F. Levassort, “Dual-Frequency Transducer for Nonlinear Contrast Agent Imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol. 60, no. 12, pp. 2634–2644, 2013.
    [20] W. T. Shi, F. Forsberg, J. S. Raichlen, L. Needleman, and B. B. Goldberg, “Pressure dependence of subharmonic signals from contrast microbubbles,” Ultrasound Med. Biol. vol. 25, no. 2, pp. 275–83, 1999.
    [21] T. Sun, N. Jia, D. Zhang and D. Xu, ”Ambient pressure dependence of the ultra-harmonic response from contrast microbubbles,”
    J. Acoust. Soc. Amer. vol. 131, no. 6, pp. 4358–4364, 2012.
    [22] W. Wilkening, M. Krueger, and H. Ermert, “Phase-coded pulse sequence for non-linear imaging,” Proc. IEEE Ultrasonics Symp. vol. 2, pp. 1559–1562, 2000.
    [23] C. C. Shen and Y. Y. Chiu, “Design of chirp excitation waveform for dual-frequency harmonic contrast detection”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 10, pp. 2198-2206, 2009.

    [24] C. Leavens, R. Williams, F. S. Foster, P. N. Burns and M. D. Sherar, “Golay pulse encoding for microbubble contrast imaging in ultrasound,’’ IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 10, pp. 2082–2090, 2007.
    [25] J. Borsboom, A. Bouakaz and N. de Jong, “Pulse subtraction time delay imaging method for ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol. 56, no. 6, pp. 1151–1158, 2009.
    [26] P. Gong, P. Song and S. Chen, “Hadamard-encoded multipulses for contrast-enhanced ultrasound imaging,’’ IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 64, no. 11, pp. 1674–1683, 2017.
    [27] Y. Li and J. A. Zagzebski, “Computer model for harmonic ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol. 47, no. 4, pp. 1259–1272, 2000.
    [28] T. Kujawska, A. Nowicki, and P. A. Lewin, “Determination of nonlinear medium parameter B/A using model assisted variable-length measurement approach,” Ultrasonics. vol. 51, no. 8, pp. 997–1005, 2011.

    QR CODE