簡易檢索 / 詳目顯示

研究生: 張宏如
Hung-Ju Chang
論文名稱: 寡聚聚乙二醇單甲醚/聚乳酸-甘醇酸雙團聯共聚物之聚酯段長度對相變行為及微胞性質的影響
Effect of Length of Polyester Segments on Phase Transition and Micelle Properties in Oligomeric Monomethoxy Poly(ethylene glycol) -Poly(D,L-lactic-co-glycolic acid) (mPEG-PLGA) Diblock Copolymers
指導教授: 胡孝光
Shiaw-Guang Hu
口試委員: 許貫中
none
白孟宜
Meng-Yi Bai
童世煌
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 68
中文關鍵詞: 微胞雙團聯共聚物相變化
外文關鍵詞: micelles, diblock copolymers, phase transition
相關次數: 點閱:284下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究合成一系列不同疏水鏈段聚合度(聚合度NPLGA=10~12)之聚乙二醇單甲醚(mPEG, NmPEG=12)/聚乳酸-甘醇酸(PLGA)雙團聯共聚物,並使用翻轉試管法及流變法測量共聚物溶液之相圖,藉由可控溫型紫外光/可見光分光光譜儀及染料溶入法測定共聚物於水溶液中的臨界微胞濃度,並計算其熱力學參數,利用動態光散射儀測量微胞粒徑,最後採用Leibler臨界微胞濃度理論,探討疏水鏈段與水的Flory-Huggins 交互作用參數χPLGA-water。
使用翻轉試管法及流變法測量共聚物溶液之相圖,結果顯示,使用流變法可求得三個相(sol, gel and precipitate),使用翻轉試管法只可觀察出兩個相(sol and gel),兩種方法求得的相變溫度之相對誤差為1~9 %,而採用流變法測量臨界成膠溫度較翻轉試管法略高,且隨著共聚物疏水鏈段長度的增加,臨界成膠溫度則微幅下降,而臨界成膠濃度明顯減少。藉由共聚物於水溶液中的臨界微胞濃度與溫度的關係,計算其熱力學參數,發現隨著共聚物疏水鏈段長度的增加,臨界微胞濃度減少,而微胞化標準焓(正值)與微胞化標準熵(正值)皆增加,微胞化自由能(負值)則減少,表示微胞的形成為自發過程,且由熵所驅動。利用共聚物之微胞化標準焓與微胞化標準熵對疏水鏈段聚合度倒數作圖,分子結構會影響其斜率。測量微胞粒徑,結果顯示隨著疏水鏈段聚合度增加,微胞半徑增加,且求得微胞半徑與疏水鏈段聚合度的冪次關係為0.44次方。採用Leibler臨界微胞濃度理論,結果發現χPLGA-water隨疏水鏈段長度增加而增加,而微胞化熱力學理論計算出微胞化自由能隨疏水鏈段長度增加而下降,因此得知疏水鏈段長度的增加,有利於微胞的形成。


Monomethoxy poly(ethylene glycol)-Poly(D,L-lactic-co-glycolic acid) (mPEG-PLGA) diblock copolymers with fixed mPEG length ( =550 g/mol) and various PLGA lengths (monomer number from 10 to 12) were synthesized. Phase diagrams were determined by the tube inverting method and rheometry. The critical micelle concentrations (CMC) and micellar radius were determined by UV/Vis spectroscopy with dye solubilization and dynamic light scattering, respectively.
Rheometric measurement showed three phases (sol, gel and precipitate), whereas the tube inverting method two phases (sol and gel ). Using the tube inverting method and rheometry, phase transition temperatures from two methods can vary between 1 to 9%. As the relative hydrophobicity of PLGA block increased, the critical gel temperatures (CGC) decreased slightly, and the critical gel concentrations (CGC) significantly. Thermodynamic parameters calculated from the dependence of CMC on temperature indicate that the micellization process is spontaneous and driven by entropy gain. Plots of entropy and enthalpy of the micellization versus reciprocal of the degrees of polymerization in hydrophobic blocks of copolymers, respectively offer the slopes influenced by the polymer structures. The micellar radius increases with the PLGA length and micellar radius is proportional to the 0.44th power of PLGA block length. Data analysis based on Leibler theory of micellization gives the Flory-Huggins interaction parameters between micelle core and water, that increase with PLGA length.

目錄 中文摘要………………………………………………………….………I 英文摘要………………………………………………………..………III 致謝………………………………………………………………..……IV 目錄………………………………………………….……….….………V 圖表索引…………………………………………….………...….....…VII 寡聚聚乙二醇單甲醚/聚乳酸-甘醇酸雙團聯共聚物之聚酯段長度對相變行為及微胞性質的影響 一、前言 ………………………………………….…………...……1 二、實驗步驟 …………………………………………………………6 2.1 mPEG-PLGA雙團聯共聚物的製備……….…………...……6 2.2 凝膠滲透層析儀分析………...…………….…………...……7 2.3 質子核磁共振光譜分析…………...……….…………...……7 2.4由翻轉試管法量測相圖……………………….........…...……7 2.5由流變法量測相圖…...………………….….…………...……8 2.6 臨界微胞濃度(critical micelle concentration)量測………8 2.7 粒徑分析………………………………………………...……9 三、微胞熱力學理論 3.1 雙團聯共聚物微胞化之熱力學性質分析………….....…...10 四、結果討論 4.1 mPEG-PLGA雙團聯共聚物之聚合反應及組成分析…......11 4.1.1 mPEG-PLGA雙團聯共聚物之聚合反應………...…..11 4.1.2 mPEG-PLGA雙團聯共聚物之組成分析………….…11 4.2 相圖分析………………………………….………..…….…13 4.2.1由翻轉試管法求得相圖………………………………13 4.2.2由流變法求得相圖……………………………..…..…14 4.2.3翻轉試管法與流變法相圖數據之比較 …………...…15 4.2.4臨界成膠性質………………………………………..…15 4.3 雙團聯共聚物之臨界微胞濃度……………………….……16 4.4 雙團聯共聚物之微胞熱力學性質探討……………….……17 4.5 臨界微胞濃度與微胞核鏈段聚合度之關係……............…18 4.6 微胞半徑與微胞核鏈段聚合度之關係……………….....…19 4.7 Flory-Huggins交互作用參數…………............................…20 4.7.1 親、疏水鏈段間Flory-Huggins交互作用參數..........20 4.7.2 臨界微胞濃度理論之疏水鏈段與水的Flory-Huggins交互作用參數...............................................................…23 五、結論………………………………………….………....…...……27 六、參考文獻…………………….…………………………..….....…28 圖表索引 Table 1.Characterization of mPEG-PLGA diblock copolymers…………………………………..……...….36 Table 2.Phase transition temperatures of diblock copolymers at various concentrations, determined by rheometry…......37 Table 3.Comparison of phase transition temperatures of mPEG-PLGA diblock copolymers at the concentrations of 15 wt %, determined by the tube inverting method and rheometry................................................................……38 Table 4.Critical gel temperatures (CGT) and critical gel concentrations (CGC) of the block copolymers determined by the tube inverting method and rheometry.…………………………………………...…39 Table 5.Critical micelle concentrations (CMC)of mPEG-PLGA diblock copolymers in water at 15~30℃.……….......…40 Table 6.Thermodynamic parameters of micellization of mPEG-PLGA diblock copolymers in water………....…41 Table 7.Micelle radius (a0)for mPEG-PLGA diblock copolymers in water at 293 K.……………………………..…......…42 Table 8.Calculated solubility parameters50……………..……....43 Table 9.Solubility parameters for different mole ratios of D,L-lactide : glycolide calculated by group contribution method 48 .…………………………………………...…44 Table 10.Comparison of the Flory-Huggins interaction parameter between and . The experimental data are from the reference52-54.………………………...….……45 Table 11.Comparison of the Flory-Huggins interaction parameters between block copolymer hydrophobic segments and water.………………………………………….……..…46 Figure 1.Schematics of synthesized mPEG-PLGA diblock copolymers. ……………..……………...……...…....…47 Figure 2 (a). 1H-NMR spectra of S-1. ……………….…………....…48 Figure 2 (b). 1H-NMR spectra of S-2. ……………..………….......…49 Figure 2 (c). 1H-NMR spectra of S-3. ……………..………….......…50 Figure 3.Phase diagrams of the S-1, S-2, and S-3 diblock copolymers in water determined by the tube inverting method.........................................................................…51 Figure 4.Loss modulus (G”) as a function of temperature in aqueous solutions of (a) S-1 and (b) S-3 diblock copolymers.……………………………………...…..…52 Figure 5.Phase diagrams of the S-1, S-2, and S-3 diblock copolymers in water determined by rheometry..…....…53 Figure 6.Storage (G’) and loss (G”) modulus as a function of temperature of S-1 diblock copolymer in 25 wt % aqueous solution.............................................................54 Figure 7.Schematic presentation of a phase transition mechanism of the block copolymers in water via micelle networks. For simplicity, a micelle is shown as a circle, although the micelle has core-corona structure 60.…………….……..55 Figure 8.The reciprocal of the critical gel temperatures (CGT) versus the reciprocal of square root of the degree of polymerization in (a) the hydrophobic segments and (b)the hydrophilic segments...………………….…………56 Figure 9.UV-VIS spectra of aqueous solutions of S-1 diblock copolymer containing hydrophobic dye(DPH) at 15°C. Polymer concentration varied(0.003, 0.005, 0.01, 0.03, 0.06, 0.07, 0.075, 0.09, and 0.1 wt %)while dye concentration was fixed at 0.4 mM.…..……..…………57 Figure 10.Plot of the absorbance versus log C for mPEG-PLGA diblock copolymers in aqueous solution at 15℃. Critical micelle concentration (CMC) was determined by the two extrapolated lines of the absorbance.....……..…………58 Figure 11.Plots of entropy of the micellization (ΔS°) versus the reciprocal of the degree of polymerization in hydrophobic block of mPEG-PLGA diblock and PEG-PLGA-PEG triblock copolymers .The PEG-PLGA-PEG triblock copolymers data are from the reference44..…................ 59 Figure 12.Schematic representation of chain topology in micelles formed from diblock and triblock copolymers.………..60 Figure 13.Plots of enthalpy of the micellization (ΔH°)versus reciprocal of the degrees of polymerization in hydrophobic block of mPEG-PLGA diblock and PEG-PLGA-PEG triblock copolymers .The PEG-PLGA-PEG triblock copolymers data are from the reference44...................................................................…61 Figure 14.Plots of logarithm of the critical micelle concentrations as a function of the logarithm of the degree of polymerization in hydrophobic block of mPEG-PLGA diblock copolymers at 288, 293, 298, and 303 K, respectively.................................................................…62 Figure 15.Size distribution of the copolymerization products of (a)S-1, (b)S-2, and(c)S-3, determined by dynamic light scattering in water at 293 K….…….………...…...……63 Figure 16.Plots of logarithm of the micellar radius as a function of the logarithm of the degree of polymerization in hydrophobic block of mPEG-PLGA diblock copolymers. (a0 obtained from DLS experiment)......................…64

1.K. Nagahama, M. Hashizume, H. Yamamoto, T. Ouchi, Y. Ohya, Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive nanogels, Langmuir, 25, 9734 (2009).
2.M. J. Song, D. S. Lee, J. H. Ahn, D. J. Kim, S. C. Kim, Thermosensitive sol–gel transition behaviors of poly(ethylene oxide)/aliphatic polyester/poly(ethylene oxide) aqueous solutions, J. Polym. Sci. A Polym. Chem., 42, 772 (2004).
3.S. J. Bae, J. M. Suh, Y. S. Sohn, Y. H. Bae, S. W. Kim, B. Jeong, Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions, Macromolecules, 38, 5260 (2005).
4.M. S. Kim, H. Hyun, K. S. Seo, Y. H. Cho, J. W. Lee, C. R. Lee, G. Khang, H. B. Lee, Preparation and characterization of MPEG–PCL diblock copolymers with thermo-responsive sol–gel–sol phase transition, J. Polym. Sci. A Polym. Chem., 44, 5413 (2006).
5.B. Jeong, Y. H. Bae, S. W. Kim, Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions, Macromolecules, 32, 7064 (1999).
6.D. S. Lee, M. S. Shim, S. W. Kim, H. Lee, I. Park, T. Y. Chang, Novel thermoreversible gelation of biodegradable PLGA-block-PEO-block- PLGA triblock copolymers in aqueous solution, Macromol. Rapid Commun., 22, 587 (2001).
7.S. J. Lee, B. R. Han, S. Y. Park, D. K. Han, S. C. Kim, Sol–gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA–PEG block copolymer aqueous solution, J. Polym. Sci. A Polym. Chem., 44, 888 (2006).
8.A. Chenite, C. Chaput, D. Wang, C. Combes, M. D. Buschmann, C. D. Hoemann, J. C. Leroux, B. L. Atkinson, F. Binette, A. Selmani, Novel injectable neutral solutions of chitosan form biodegradable gels in situ, Biomaterials, 21, 2155 (2000).
9.J. Wang, D. D. N. Sun, Y. Shin-Ya, K. W. Leong, Stimuli-responsive hydrogel based on poly(propylene phosphate), Macromolecules, 37, 670 (2004).
10.Y. Takeuchi, H. Uyama, N. Tomoshige, E. Watanabe, Y. Tachibana, S. Kobayasi, Injectable thermoreversible hydrogels based on amphiphilic poly(amino acid)s, J. Polym. Sci. A Polym. Chem., 44, 671 (2006).
11.M. Malmsten, B. Lindman, Self-assembly in aqueous block copolymer solutions, Macromolecules, 25, 5440 (1992).
12.B. Jeong, Y. H. Bae, S. W. Kim, Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions, Macromolecules, 32, 7069 (1999).
13.Z. Gao, A. Eisenberg, A model of micellization for block copolymers in solutions, Macromolecules, 26, 7353 (1993).
14.A. Lavasanifar, J. Samuel, G. S. Kwon, Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery, Adv. Drug Deliv. Rev., 54, 169 (2002).
15.M. G. Styring, C. Booth, Micellization and surface properties of poly(oxyethylene) methyl n-alkyl ethers, J. Colloid and Interface Sci., 136, 588 (1990).
16.J. Ding, D. Attwood, C. Price, C. Booth, Use of cown ether in the anionic polymerization of propylene oxide-3. preparation and micellization of diblock - copoly(oxypropylene/oxyethylene), Eur. Polym. J., 27, 901 (1991).
17.C. Price, K. D. Kendall, R. B. Stubbersfield, B. Wright, Thermodynamics of micellization of a polystyrene-b- poly(ethylene/propylene) block copolymer in n-decane, Polymer Communications, 24, 326 (1983).
18.Z. L. Wang, Y. Liu, Z. Zhang, Handbook of Nanophase and Nanostructured Materials, Kluwer Academic /Plenum Publishers, New York, Chapter 1, 2003.
19.K. Mortensen, J. S. Pedersen, Structural study on the micelle formation of poly(ethy1ene oxide)-poly(propy1ene oxide)- poly(ethy1ene oxide) triblock copolymer in aqueous Solution, Macromolecules, 26, 805 (1993).
20.G. Wanka, H. Hoffmann, W. Ulbricht, The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution, Coll. Polym. Sci., 268, 101 (1990).
21.K. Mortensen, W. Brown, B. Norden, Inverse melting transition and evidence of three-dimensional cubatic structure in a block-copolymer micellar system, Phys. Rev. Lett., 68, 2340 (1992).
22.M. Wilhelm, C. L. Zhao, Y. Wang, R. Xu, M. A. Winnik, J. L. Mura, G. Riess, M. D. Croucher, Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study, Macromolecules, 24, 1033 (1991).
23.L. Liu, C. Li, X. Liu, B. He, Micellar formation in aqueous milieu from biodegradable triblock copolymer polylactide/poly(ethylene glycol)/polylactide ,Polymer, 31, 845 (1999).
24.L. Yang, Z. Zhao, J. Wei, A. E. Ghzaoui, S. Li, Micelles formed by self-assembling of polylactide / poly(ethylene glycol) block copolymers in aqueous solutions, J. Colloid Interface Sci., 314, 470 (2007).
25.D. G. Hall, B. A. Pethica, Nonionic surfactants, Marcel Dekker, Inc., New York, Chapter 16, 1967.
26.K. Meguro, M. Ueno, and K. Esumi, Nonionic surfactants:physical chemistry, Marcel Dekker, Inc., New York, Chapter 3, 1987.
27.Z. Tuzar, P. Kratochvil, Surface and colloid science, Plenum Press, New York, Chapter 1, 1969.
28.I. W. Hamley, Introduction to soft matter:polymers, colloids, amphiphiles and liquid crystals, John Wiley & Sons, Chichester, 2000.
29.J. R. Quintana, M. Villacampa, A. Andrio, M. Munoz, I. A. Katime, Micellization of a polystyrene-block-poly(ethylene/propylene) copolymer in n-alkanes. 2. structural study, Macromolecules, 25, 3129 (1992).
30.P. Alexandridis, T. A. Hatton, Poly(ethylene oxide)-poly(propylene oxide )-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling, Colloids Surf. A Physicochem. Eng. Asp., 96 , 1 (1995).
31.C. Price, E. K. M. Chan, R. H. Mobbs, R. B. Stubbersfield, A thermodynamic investigation of micelle formation by a polystyrene-b-polyisoprene block copolymer in n-hexadecane, Eur. Polym. J., 21, 355 (1985).
32.C. Price, E. K. M. Chan, R. B. Stubbersfield, The effect of block length on the thermodynamic stability of micelles formed by polystyrene-block-polyisoprene copolymers in n-hexadecane, Eur. Polym. J., 23, 649 (1987).
33.J. Noolandi, K. M. Hong, Theory of block copolymer micelles in solution, Macromolecules, 16, 1443 (1983).
34.A. Halperin, Polymeric micelles: a star model, Macromolecules, 20, 2943 (1987).
35.S. Patel, A. Lavasanifar, P. Choi, Application of molecular dynamics simulation to predict the compatability between water-insoluble drugs and self-associating poly(ethylene oxide)-b-poly(ε-caprolactone) block copolymers, Biomacromolecules, 9, 3014 (2008).
36.S. Tanodekaew, J. Godward, F. Heatley, C. Booth, Gelation of aqueous solutions of diblock copolymers of ethylene oxide and D,L-lactide, Macromol. Chem. Phys. , 198, 3385 (1997).
37.P. Alexandridis, J. F. Holzwarth, T. A. Hatton, Micellization of poly(ethy1ene oxide)-poly(propy1ene oxide)-poly(ethy1ene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association, Macromolecules, 27, 2414 (1994).
38.B. Chu and Z. Zhou, Nonionic surfactants, Marcel Dekker, Inc., New York, Vol. 60, 1967.
39.A. Holtzer, M. F. Holtzer, On the use of the van't Hoff relation in determinations of the enthalpy of micelle formation [4], J. Phys. Chem.,78, 1443 (1974).
40.D. Attwood, A. T. Florence, Surfactant systems:their chemistry, pharmacy and biology, Chapman & Hall, London, 1983.
41.A. M. Kisselev, E. Manias, Phase behavior of temperature-responsive polymers with tunable LCST: An equation-of-state approach, Fluid Phase Equilib., 261, 69 (2007).
42.K-W Kwon, M. J. Park, Y. H. Bae, H. D. Kim, K. Char, Gelation behavior of PEO-PLGA-PEO triblock copolymers in water, Polymer, 43, 3353 (2002).
43.Y. Gnanou, M. Fontanille, Organic and physical chemistry of polymers, John Wiley & Sons, Inc., Canada, Chapter 4, 2008.
44.B. Jeong, Y. H. Bae, S. W. Kim, Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers, Colloids Surf. B Biointerfaces, 16, 185 (1999).
45.R. H. Boyd, P. J. Phillips, The science of polymer molecules, Cambridge University Press, New York, Chapter 9, 1993.
46.F. S. Bates, M. F. Schulz, J. H. Rosedale, Correlation of binary polyolefin phase behavior with statistical segment length asymmetry, Macromolecules, 25, 5547 (1992).
47.Y. Zhao, L.-Y. You, Z.-Y. Lu, C.-C. Sun, Dissipative particle dynamics study on the multicompartment micelles self-assembled from the mixture of diblock copolymer poly(ethyl ethylene)- block-poly(ethylene oxide) and homopolymer poly(propylene oxide) in aqueous solution, Polymer, 50, 5333 (2009).
48.W.-J. Lee, S.-P. Ju, Y.-C. Wang, J.-G. Chang, Modeling of polyethylene and poly (L-lactide) polymer blends and diblock copolymer: Chain length and volume fraction effects on structural arrangement, J. Phys. Chem., 127, 064902 (2007).
49.C. M. Hansen, The three dimensional solubility parameter — key to paint component affinities: I. solvents, plasticizers, polymers, and resins, J. Paint Tech., 39, 505 (1967).
50.S. Schenderlein, M. Luck, B. W. Muller, Partial solubility parameters of poly(D,L-lactide-co-glycolide), Int. J. Pharm., 286, 19 (2004).
51.R. F. Fedors, A method for estimating both the solubility parameters and molar volumes of liquids, Polym. Eng. Sci., 14,147 (1974).
52.P. Busch, D. Posselt, D.-M. Smilgies, M. Rauscher, C. M. Papadakis, Inner structure of thin films of lamellar poly(styrene-b-butadiene) diblock copolymers as revealed by grazing-incidence small-angle scattering, Macromolecules, 40, 630 (2007).
53.A. K. Khandpur, S. Farster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortensen, Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition, Macromolecules, 28, 8796 (1995)
54.J.-Y. Wang, W. Chen, T. P. Russell, Ion-complexation-induced changes in the interaction parameter and the chain conformation of PS-b-PMMA copolymers, Macromolecules, 41, 4904 (2008).
55.Y. Du, Y. Xue, H. L. Frisch, Physical Properties of Polymers Handbook, AIP Press, Woodbury, New York, Chaper 16, 1996.
56.E. A. Grulke, Polymer handbook, fourth edition, Wiley, New York, VII-675, 1989.
57.M. R. Munch, A. P. Gast, Block copolymers at interfaces. 1. Micelle formation, Macromolecules, 21, 1360 (1988).
58.L. Leibler, H. Orland, J. C. Wheeler, A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, J. Phys. Chem., 79, 3550 (1983).
59.N. P. Balsara, M. Tirrell, T.P. Lodge, Micelle formation of BAB triblock copolymers in solvents that preferentially dissolve the A block , Macromolecules, 24, 1975 (1991).
60.L. Yu, G. Chang, H. Zhang, J. Ding, Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water, J. Polym. Sci. A Polym. Chem.,45, 1122 (2007).

無法下載圖示 全文公開日期 2016/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE