簡易檢索 / 詳目顯示

研究生: 陳俊彣
Jiun-Wen Chen
論文名稱: 以磁控濺鍍法製備鍶摻雜生物活性玻璃薄膜之研究與性質探討
Preparation and characterization of thin film Strontium-doped bioactive glass prepared by magnetron sputtering
指導教授: 周育任
Yu-Jen Chou
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 86
中文關鍵詞: 射頻磁控濺鍍生物活性玻璃鍶摻雜
外文關鍵詞: Radio-frequency magnetron sputtering, bioactive glass, Strontium doped
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來生醫金屬植入材常使用鐵、鈦、與鈷系合金材料為大宗,因其具有高硬度、高彈性模數等物理性質,同時具備生物惰性之優勢。然而,當此類金屬材料植入體內後,容易在界面處誘發炎症因子,進而引發異物反應和排斥作用,導致傷口無法有效癒合,使得成效不彰。此外,此類生醫金屬植入材在體內長時間會受到體液腐蝕,並釋放金屬離子於體內循環系統,而有引發慢性病之疑慮。
為改善上述金屬植入材之缺陷,現今相關研究多以氫氧基磷灰石塗層進行表面改質,並由於其良好的骨傳導和生物活性特性,是牙科和骨科的首選生物材料。然而相較於生物活性玻璃塗層,氫氧基磷灰石形成速率較慢、且因其結晶結構易造成與鈦的粘附性下降。
為拓展新的植入物塗層,本研究以表面改質方式,使用磁控濺鍍製程,披覆生物活性玻璃薄膜於金屬植入材表面,以提升其生物相容性,且提供額外地生物活性與生物功能性。此外,本研究將以噴霧乾燥法製備濺鍍靶材所需之生物活性玻璃粉體,該製程具有生產快速、成分均勻及化學可調性等優勢,並且透過冷壓工法與高溫燒結方式完成靶材製作。最後,所製備之粉體及薄膜將將藉由掃描式電子顯微鏡、能量色散光譜及傅立葉轉換紅外線光譜等手法,針對其物性與化性進行分析及探討。此外,材料之生物活性將及骨傳導性亦將以體外試驗進行評估。


In recent years, iron, titanium, and cobalt-based alloys have been commonly used as biomedical metal implant materials due to their high hardness, high elasticity modulus, and bioinert. However, after implantation, these metal materials can easily induce inflammatory factors at the interface, leading to foreign body reactions and rejection, which impairs effective wound healing. In addition, these biomedical metal implants can be corroded by body fluids over time and release metal ions into the circulatory system, raising concerns about chronic diseases.
To overcome these defects of metal implants, current research focuses on surface modification using hydroxyapatite coatings. Due to its excellent bone conduction and biocompatibility, hydroxyapatite is a preferred biomaterial for dental and orthopedic applications. However, compared to bioactive glass coatings, hydroxyapatite has a slower formation rate and can cause a decrease in adhesion to titanium due to its crystalline structure.
To expand the scope of implant coatings, this study uses magnetron sputtering to deposit a thin film of bioactive glass on the surface of metal implants through surface modification, to enhance their biocompatibility and provide additional bioactivity and biological functionality. In addition, this study will prepare bioactive glass powder required for sputtering targets using spray-drying, which offers advantages such as rapid production, uniform composition, and chemical adjustability. The target will be produced using cold pressing and high-temperature sintering. Finally, the properties and characteristics of the prepared powder and films will be analyzed and explored through scanning electron microscopy, energy dispersive spectroscopy, and Fourier-transform infrared spectroscopy. Furthermore, the biocompatibility and bone conduction of the materials will be evaluated through in vitro experiments.

摘要 1 Abstract 4 目錄 7 圖目錄 10 表目錄 13 第1章 研究介紹 14 第2章 文獻回顧 15 2.1 生醫材料 (Biomaterial) 15 2.1.1 鈦和鈦合金 (Titanium and Titanium alloy) 17 2.1.2 氫氧基磷灰石 (Hydroxyapatite) 19 2.1.3 三鈣磷酸鹽 (Tricalcium phosphate) 19 2.1.4 生物活性玻璃 (Bioactive glass) 21 2.2 生物活性玻璃介紹 (The introduction of bioactive glass) 22 2.2.1 玻璃網路結構 (The glass structural) 22 2.2.2 生物活性介紹 (The introduction of bioactivity) 23 2.2.3 生物活性生成機制 (Bioactivity formation mechanism) 26 2.2.4 鍶元素 (Strontium) 28 2.3 生物活性玻璃製備 (Preparation methods of bioactive glass) 29 2.3.1 熔融淬火法 (Molten quenching method) 29 2.3.2 溶膠凝膠法 (Sol-gel method) 30 2.3.3 噴霧熱解法 (Spray pyrolysis method) 31 2.3.4 噴霧乾燥法 (Spray drying method) 32 2.4 生物活性玻璃薄膜之製備方法 (Preparation methods for thin film of bioactive glass) 33 2.4.1 電泳沉積法 (Electrophoretic deposition method) 35 2.4.2 熱噴塗法 (Thermal spraying method) 36 2.4.3 脈衝雷射沉積法 (Pulse laser deposition method) 37 2.4.4 磁控濺鍍法 (Magnetron sputtering method) 38 2.5 磁控濺鍍 (Magnetron sputtering method) 38 2.5.1 磁控濺鍍原理 (The principle of magnetron sputtering) 39 2.5.2 薄膜成長機制 (The growth mechanism of thin film) 42 2.5.3 濺鍍操作參數對薄膜之影響 (The effects of sputtering parameters for thin film) 45 第3章 實驗方法與設備 47 3.1 實驗流程及實驗設計 (Procedure and design of experiment) 47 3.2 實驗藥品 (Experimental chemicals) 50 3.3 實驗及檢測儀器 (Experimental and detect device) 52 3.3.1 傅立葉轉換紅外光譜 (Fourier transform infrared spectrometer, FTIR) 52 3.3.2 場發射雙束型聚焦離子束顯微鏡 (Dual beam focused ion beam scanning electron microscope, FIB-SEM) 54 3.3.3 體外生物活性測試 (In vitro bioactive examination) 56 3.3.4 細胞增殖試驗 (The cell proliferation test) 57 第4章 實驗結果 58 4.1 生物活性玻璃粉體分析 (The results of bioactive glass powder) 58 4.1.1 粉體粒徑及表面微觀觀察 (Particle size and surface observation) 58 4.2 生物活性玻璃薄膜分析 (The results of bioactive glass thin film) 59 4.2.1 組成成分分析 (Chemical composition analysis) 59 4.2.2 薄膜厚度分析 (Thin film thickness analysis) 61 4.2.3 鍵結結構 (Bonding vibration) 62 4.2.4 體外生物活性試驗 (In vitro bioactivity test) 63 4.2.5 細胞毒性試驗 (MTT assay test) 69 第5章 結果討論 71 5.1 薄膜化學組成及玻璃結構探討 (Discussion of chemical composition and glass structure) 71 5.1.1 58S薄膜 (58S TFBG) 71 5.1.2 鍶摻雜58S薄膜 (Sr doped 58S TFBG) 71 5.2 生物活性探討 (The discussion of In vitro bioactivity test) 72 5.2.1 58S薄膜 (58S TFBG) 72 5.2.2 鍶摻雜58S薄膜 (Sr doped 58S TFBG) 73 5.2.3 HA圖像面積討論 74 第6章 結論 75 第7章 未來工作 76 第8章 Reference 77

[1] https://www.stat.gov.tw/public/Data/132162358VPAVQ8D.pdf, 國情統計通報.
[2] Y.-C. Lin, W.-H. Pan, Bone Mineral Density in Adults in Taiwan: Results of the Nutrition and Health Survey in Taiwan 2005-2008 (NAHSIT 2005-2008), Asia Pacific Journal of Clinical Nutrition, 20 (2011) 283-291.
[3] https://www.osteoporosis.foundation/facts-statistics/epidemiology-of-osteoporosis-and-fragility-fractures.
[4] https://www.mohw.gov.tw/dl-78745-90f0de94-5c98-4e1b-8cb2-7efe3b0361ac.html, 民國一百零八年中老年身心社會生活狀況長期追蹤調查成果報告, (Mar. 2022).
[5] Y. Hu, S.R. Winn, I. Krajbich, J.O. Hollinger, Porous polymer scaffolds surface‐modified with arginine‐glycine‐aspartic acid enhance bone cell attachment and differentiation in vitro, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 64 (2003) 583-590.
[6] V. Challa, S. Mali, R. Misra, Reduced toxicity and superior cellular response of preosteoblasts to Ti‐6Al‐7Nb alloy and comparison with Ti‐6Al‐4V, Journal of Biomedical Materials Research Part A, 101 (2013) 2083-2089.
[7] L. Tan, X. Yu, P. Wan, K. Yang, Biodegradable materials for bone repairs: a review, Journal of Materials Science & Technology, 29 (2013) 503-513.
[8] M. Niinomi, Metallic biomaterials, Journal of Artificial Organs, 11 (2008) 105-110.
[9] X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering: R: Reports, 47 (2004) 49-121.
[10] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Current opinion in solid state and materials science, 12 (2008) 63-72.
[11] M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A, 243 (1998) 231-236.
[12] M. Fathi, A.D. Mohammadi, Preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant, Materials Science and Engineering: A, 474 (2008) 128-133.
[13] P. Galliano, J.J. De Damborenea, M.J. Pascual, A. Durán, Sol-gel coatings on 316L steel for clinical applications, Journal of sol-gel science and technology, 13 (1998) 723-727.
[14] S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma, A.P. Tomsia, Bioactive glass coatings for orthopedic metallic implants, Journal of the European Ceramic Society, 23 (2003) 2921-2930.
[15] C. Berbecaru, H. Alexandru, G. Stan, D. Marcov, I. Pasuk, A. Ianculescu, First stages of bioactivity of glass-ceramics thin films prepared by magnetron sputtering technique, Materials Science and Engineering: B, 169 (2010) 101-105.
[16] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research, 5 (1971) 117-141.
[17] R. Li, A. Clark, L.L. Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239.
[18] S.-J. Shih, Y.-J. Chou, I.-C. Chien, One-step synthesis of bioactive glass by spray pyrolysis, Journal of Nanoparticle Research, 14 (2012) 1-8.
[19] Y.-J. Chou, C.-W. Hsiao, N.-T. Tsou, M.-H. Wu, S.-J. Shih, Preparation and in Vitro Bioactivity of Micron-sized Bioactive Glass Particles Using Spray Drying Method, Applied Sciences, 9 (2018) 19.
[20] R.G. Carrodeguas, S. De Aza, α-Tricalcium phosphate: Synthesis, properties and biomedical applications, Acta biomaterialia, 7 (2011) 3536-3546.
[21] D.J. Cockayne, The study of nanovolumes of amorphous materials using electron scattering, Annu. Rev. Mater. Res., 37 (2007) 159-187.
[22] B.E. Warren, X-ray Diffraction, Courier Dover Publications, 1969.
[23] D. Bellucci, A. Sola, V. Cannillo, Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications, Journal of Biomedical Materials Research Part A, 104 (2016) 1030-1056.
[24] H.R. Fernandes, A. Gaddam, A. Rebelo, D. Brazete, G.E. Stan, J.M. Ferreira, Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering, Materials, 11 (2018) 2530.
[25] L.L. Hench, R.J. Splinter, W. Allen, T. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of biomedical materials research, 5 (1971) 117-141.
[26] A. Tilocca, Models of structure, dynamics and reactivity of bioglasses: a review, Journal of Materials Chemistry, 20 (2010) 6848-6858.
[27] J. Henao, C. Poblano-Salas, M. Monsalve, J. Corona-Castuera, O. Barceinas-Sanchez, Bio-active glass coatings manufactured by thermal spray: A status report, Journal of Materials Research and Technology, 8 (2019) 4965-4984.
[28] B. KARASU, A.O. YANAR, A. KOÇAK, Ö. KISACIK, Biyoaktif Camlar, El-Cezeri, 4 (2017) 436-471.
[29] L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society, 74 (1991) 1487-1510.
[30] L. Hench, in, World Scientific, Imperial College Press: Hackensack, New Jersey, London. xix, 2013.
[31] L. Hench, Вioceramics", The American Ceramic Society, 81 (1998) 1705-1728.
[32] P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, T. Yamamuro, Apatite formation induced by silica gel in a simulated body fluid, Journal of the American Ceramic Society, 75 (1992) 2094-2097.
[33] A. Moghanian, M. Zohourfazeli, M.H.M. Tajer, Z. Miri, S. Hosseini, A. Rashvand, Preparation, characterization and in vitro biological response of simultaneous co-substitution of Zr+ 4/Sr+ 2 58S bioactive glass powder, Ceramics International, 47 (2021) 23762-23769.
[34] S. Hesaraki, M. Gholami, S. Vazehrad, S. Shahrabi, The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system, Materials Science and Engineering: C, 30 (2010) 383-390.
[35] U. Pantulap, M. Arango-Ospina, A.R. Boccaccini, Bioactive glasses incorporating less-common ions to improve biological and physical properties, Journal of Materials Science: Materials in Medicine, 33 (2022) 1-41.
[36] M.N. Rahaman, D.E. Day, B.S. Bal, Q. Fu, S.B. Jung, L.F. Bonewald, A.P. Tomsia, Bioactive glass in tissue engineering, Acta biomaterialia, 7 (2011) 2355-2373.
[37] E.M. Valliant, J.R. Jones, Softening bioactive glass for bone regeneration: sol–gel hybrid materials, Soft Matter, 7 (2011) 5083-5095.
[38] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239.
[39] C. Vichery, J.-M. Nedelec, Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications, Materials, 9 (2016) 288.
[40] C.-Y. Chen, T.-K. Tseng, C.-Y. Tsay, C.-K. Lin, Formation of irregular nanocrystalline CeO2 particles from acetate-based precursor via spray pyrolysis, Journal of Materials Engineering and Performance, 17 (2008) 20-24.
[41] S.J. Shih, D.R.M. Sari, Y.C. Lin, Influence of chemical composition on the bioactivity of spray pyrolyzed mesoporous bioactive glass, International Journal of Applied Ceramic Technology, 13 (2016) 787-794.
[42] F.F. Bakare, Y.-J. Chou, Y.-H. Huang, A.H. Tesfay, T. Moriga, S.-J. Shih, Correlation of Morphology and In-Vitro Degradation Behavior of Spray Pyrolyzed Bioactive Glasses, Materials, 12 (2019) 3703.
[43] Y.-J. Chou, C.-W. Hsiao, N.-T. Tsou, M.-H. Wu, S.-J. Shih, Preparation and in Vitro Bioactivity of Micron-sized Bioactive Glass Particles Using Spray Drying Method, Applied Sciences, 9 (2019) 19.
[44] A. Stunda-Zujeva, Z. Irbe, L. Berzina-Cimdina, Controlling the morphology of ceramic and composite powders obtained via spray drying–a review, Ceramics International, 43 (2017) 11543-11551.
[45] S.J. Lukasiewicz, Spray‐drying ceramic powders, Journal of the American Ceramic Society, 72 (1989) 617-624.
[46] G. Molino, A. Bari, F. Baino, S. Fiorilli, C. Vitale-Brovarone, Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass–ceramic scaffolds for bone tissue regeneration, Journal of Materials Science, 52 (2017) 9103-9114.
[47] T. Hanawa, Metal ion release from metal implants, Materials Science and Engineering: C, 24 (2004) 745-752.
[48] R. Sergi, D. Bellucci, V. Cannillo, A comprehensive review of bioactive glass coatings: State of the art, challenges and future perspectives, Coatings, 10 (2020) 757.
[49] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in materials science, 52 (2007) 1-61.
[50] D. Krause, B. Thomas, C. Leinenbach, D. Eifler, E.J. Minay, A.R. Boccaccini, The electrophoretic deposition of Bioglass® particles on stainless steel and Nitinol substrates, Surface and Coatings Technology, 200 (2006) 4835-4845.
[51] A. Balamurugan, G. Balossier, J. Michel, J. Ferreira, Electrochemical and structural evaluation of functionally graded bioglass-apatite composites electrophoretically deposited onto Ti6Al4V alloy, Electrochimica Acta, 54 (2009) 1192-1198.
[52] M. Furkó, K. Balázsi, C. Balázsi, Comparative study on preparation and characterization of bioactive coatings for biomedical applications—A review on recent patents and literature, Rev. Adv. Mater. Sci, 48 (2017) 25-51.
[53] L. Pawlowski, The science and engineering of thermal spray coatings, John Wiley & Sons, 2008.
[54] M.Z. Ibrahim, A.A. Sarhan, F. Yusuf, M. Hamdi, Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants–A review article, Journal of Alloys and Compounds, 714 (2017) 636-667.
[55] L. D'alessio, R. Teghil, M. Zaccagnino, I. Zaccardo, D. Ferro, V. Marotta, Pulsed laser ablation and deposition of bioactive glass as coating material for biomedical applications, Applied surface science, 138 (1999) 527-532.
[56] R. Narayanan, S. Seshadri, T. Kwon, K. Kim, Calcium phosphate‐based coatings on titanium and its alloys, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 85 (2008) 279-299.
[57] D. Dhinasekaran, G.S. Kaliaraj, M. Jagannathan, A.R. Rajendran, A. Prakasarao, S. Ganesan, B. Subramanian, Pulsed laser deposition of nanostructured bioactive glass and hydroxyapatite coatings: Microstructural and electrochemical characterization, Materials Science and Engineering: C, 130 (2021) 112459.
[58] G. Stan, D. Marcov, I. Pasuk, F. Miculescu, S. Pina, D. Tulyaganov, J. Ferreira, Bioactive glass thin films deposited by magnetron sputtering technique: The role of working pressure, Applied Surface Science, 256 (2010) 7102-7110.
[59] K. Wasa, M. Kitabatake, H. Adachi, Thin film materials technology: sputtering of control compound materials, Springer Science & Business Media, 2004.
[60] P. Sigmund, Introduction to sputtering, Mat. Fys. Med. Dan. Vid. Selsk, 43 (1993) 7-26.
[61] J.E. Mahan, Physical vapor deposition of thin films, 2000.
[62] I. Svadkovski, D. Golosov, S. Zavatskiy, Characterisation parameters for unbalanced magnetron sputtering systems, Vacuum, 68 (2002) 283-290.
[63] B. Window, N. Savvides, Charged particle fluxes from planar magnetron sputtering sources, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4 (1986) 196-202.
[64] I. Petrov, P. Barna, L. Hultman, J. Greene, Microstructural evolution during film growth, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21 (2003) S117-S128.
[65] P. Barna, M. Adamik, Fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin solid films, 317 (1998) 27-33.
[66] J. Venables, G. Spiller, Nucleation and growth of thin films, in: Surface Mobilities on Solid Materials, Springer, 1983, pp. 341-404.
[67] J. Hora, C. Hall, D. Evans, E. Charrault, Inorganic thin film deposition and application on organic polymer substrates, Advanced Engineering Materials, 20 (2018) 1700868.
[68] F.C. Matacotta, G. Ottaviani, Science and technology of thin films, World scientific, 1995.
[69] A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, 518 (2010) 4087-4090.
[70] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27 (2006) 2907-2915.
[71] J. Serra, P. Gonzalez, S. Liste, S. Chiussi, B. Leon, M. Pérez-Amor, H. Ylänen, M. Hupa, Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses, Journal of Materials science: Materials in medicine, 13 (2002) 1221-1225.
[72] Y. Zhao, M. Song, C. Chen, J. Liu, The role of the pressure in pulsed laser deposition of bioactive glass films, Journal of non-crystalline solids, 354 (2008) 4000-4004.
[73] E. Gentleman, Y.C. Fredholm, G. Jell, N. Lotfibakhshaiesh, M.D. O'Donnell, R.G. Hill, M.M. Stevens, The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials, 31 (2010) 3949-3956.
[74] S.-I. Roohani-Esfahani, S. Nouri-Khorasani, Z. Lu, R. Appleyard, H. Zreiqat, The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites, Biomaterials, 31 (2010) 5498-5509.
[75] A. Moghanian, S. Firoozi, M. Tahriri, Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceramics International, 43 (2017) 14880-14890.
[76] C. Demin, Preparation and solubility of the solid solution of strontium substituted hydroxyapatite, Chinese Journal of Biomedical Engineering, 20 (2001) 278-280.

無法下載圖示 全文公開日期 2033/08/01 (校內網路)
全文公開日期 2033/08/01 (校外網路)
全文公開日期 2033/08/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE