簡易檢索 / 詳目顯示

研究生: 尤薇瑄
Wei-Hsuan Yu
論文名稱: 內部氫化製程對Mg-5Y合金機械性質影響之研究
A study on the effect of internal hydrogenation on the mechanical properties of Mg-5Y alloy
指導教授: 丘群
Chun Chiu
口試委員: 雷添壽
陳士勛
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: 鎂釔合金熱氫製程氫化物內部氫化機系性質
外文關鍵詞: Mg-Y alloy, Thermal hydrogen process, Internal hydrogenation, Hydride, Mechanical properties
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用 Mg-5Y (wt%) 合金作為基材並進行內部氫化處理。以 275 ℃、300 ℃ 及 325 ℃ 為處理溫度、36 小時和 48 小時為吸氫時間,於 0.34 MPa 氫氣壓力下進行內部氫化後在真空下放氫 1 小時,並分析試片之成分、微觀結構及機械性質以探討內部氫化作用對 Mg-5Y 合金之影響。
    研究結果顯示 Mg-5Y 合金經內部氫化作用後可得均勻散佈於 Mg 基底的 YH2 氫化物。隨著內部氫化處理溫度從 275 ℃ 提升至 325 ℃,YH2 含量增加且均勻散佈,但伴隨著基底中 Y 元素損耗,使 Mg-5Y 合金於內部氫化作用後造成固溶強化效果下降,導致材料硬度及強度下降。隨著內部氫化處理時間從 36 小時增加至 48 小時,Mg-5Y 合金晶粒成長更為明顯,材料內部總晶界面積減小而無法阻礙差排滑移,導致材料硬度及強度下降。
    本研究中最佳參數為 300 ℃ 內部氫化處理 36 小時,因其無晶粒成長且形成之氫化物含量少,保持試片原固溶強化效果,使其硬度及強度無下降趨勢。


    In this study, internal hydrogenation was performed on Mg-5Y (wt.%) alloy. The hydrogenation was carried out at 275, 300, and 325 ℃ under 0.34 MPa of hydrogen for 36 and 48 hours, and followed by dehydrogenation for 1 hour. The effects of internal hydrogenation on composition, microstructure and mechanical properties of Mg-5Y alloy were studied.
    The results show that uniformly-distributed YH2 on the Mg matrix can be obtained after internal hydrogenation of Mg-5Y alloy. As the temperature increases from 275 ℃ to 325 ℃, the amount of YH2 increases and YH2 distributes more uniformly. However, with the loss of Y element in the matrix, the effect of solid solution strengthening after internal hydrogenation is reduced, resulting in decrease of hardness and the strength. The grain growth of Mg is observed clearly when the hydrogenation time increases from 36 to 48 hours. The total grain boundary area inside the material is reduced and its ability to hinder the dislocation slip decreases, resulting in the decrease in hardness and strength of the material.
    The optimal treatment temperature and time in this study are 300 ℃ and 36 hours, respectively. Mg-5Y alloy prepared with these parameters has no grain growth and lower hydride content. The solid solution strengthening effect is maintained, and its hardness and strength do not decrease.

    摘要……………………………………………………………………….Ⅰ Abstract…………………………………………………………………..Ⅱ 誌謝……………………………………………………………………..Ⅲ 目錄……………………………………………………………………..Ⅳ 圖目錄………………………………………………………………….Ⅶ 表目錄…………………………………………………………………...Ⅹ 第一章 前言……………………………………………………………..1 第二章 文獻回顧………………………………………………………..4 2.1 鎂與鎂合金之簡介………………...……………………………..4 2.1.1 純鎂的介紹…….……………...……………………………..4 2.1.2 鎂合金的介紹…….……………...…………………………..5 2.1.3 鎂合金之命名….……………...……………………………..6 2.1.4 合金元素添加的影響………...……………………………...8 2.2 鎂釔合金…………………………...………………………..…..13 2.3 鎂合金之強化方式……………...…………………………...….15 2.3.1 固溶強化…….……………...…………………………..…..15 2.3.2 應變硬化…….……………...………………………………16 2.3.3 散佈強化…….……………...………………………………17 2.3.4 析出硬化…….……………...………………………………17 2.3.5 晶粒細化…….……………...………………………………18 2.4 熱氫製程…………………………...………………………..…..19 2.4.1 熱氫製程於粉末上的應用....………………………………20 2.4.2 熱氫製程於塊材上的應用....………………………………22 第三章 實驗方法………………………………………………………31 3.1 實驗流程………………...………………………………………31 3.2 實驗材料………………...………………………………………33 3.3 熔煉設備及試片製備…...………………………………………34 3.3.1 熔煉設備…….……………...………………………………34 3.3.2 試片製備…….……………...………………………………34 3.4 吸放氫加熱控制系統…...………………………………………35 3.5 分析儀器…...……………………………………………………36 3.5.1 光學顯微鏡….……………...………………………………36 3.5.2 場發式掃描電子顯微鏡…….……………...………………37 3.5.3 X光繞射分析儀…….……………...……………………….38 3.5.4 場發射雙束型聚焦離子束顯微鏡…….……………...……39 3.5.5 場發射穿透式電子顯微鏡…….……………...……………40 3.6 機械性質測試…………………………………………………...41 3.6.1 奈米壓痕機械性質分析儀………...………………….……41 3.6.2 洛氏硬度機………...………………………………….……41 3.6.3 動態拉伸試驗機………...…………………………….……42 第四章 結果與討論……………………………………………………44 4.1 顯微結構及成分分析……...……………………………………44 4.1.1 Mg-5Y 原材分析…………………………………………...44 4.1.2 Mg-5Y 經內部氫化後之分析……………………………...47 4.1.3 Mg-5Y 經熱氦處理後之分析……………………………...64 4.1.4 晶粒尺寸計算……………………………………………....68 4.2 機械性質……...…………………………………………………69 4.2.1 硬度試驗……………………………………………………69 4.2.2 拉伸試驗……………………………………………………71 4.2.3 破斷面觀察…………………………………………………73 4.3 實驗結果討論...…………………………………………………78 第五章 結論……………………………………………………………83 參考文獻…………………………………………………………..……85

    [1] X. Shi, J. Zou, C. Liu, L. Cheng, D. Li, X. Zeng, W. Ding, “Study on hydrogenation behaviors of a Mg-13Y alloy”, Internal journal of hydrogen energy 39, 2014, pp. 8303-8310.
    [2] L. Gao, R.S. Chen, E.H. Han, “Solid solution strengthening behaviors in binary Mg-Y single phase alloys”, Journal of alloys and compounds 472, 2009, pp. 234-240.
    [3] J. W. Kong, Q. N. Shi, J. H. Wang, J. H. Yi, H. C. Xie, L. W. Chen, “Microstructure and properties of Ag-1.33%Mg-0.54%Ni alloy after severe plastic deformation and internal oxidation”, Rare metal materials and engineering 42, 2013, pp. 32-36.
    [4] S. Morozumi, H. Saikawa, T. Minegishi, M. Matsuyama, K. Watanabe, M. Iijima, M. Ohtsuki, “Structure and mechanical properties of internally hydrided Mg-Ⅲa transition metal alloys”, Journal of materials science 31, 1996, pp. 4647-4654.
    [5] I. Polmear, D. StJohn, J. F. Nie, M. Qian, “6-Magnesium alloys”, Light alloys (fifth edition) metallurgy of the light metals, 2017, pp. 287-367.
    [6] 張文政、劉正、毛萍莉,「鎂金屬提煉和精煉工藝的研究進展」,機械傳動雜誌 11 期,民國 103 年。
    [7] I. Polmear, D. StJohn, J. F. Nie, M. Qian, “3-Casting of light alloys”, Light alloys (fifth edition) metallurgy of the light metals, 2017, pp. 109-156.
    [8] M. K. Kulekci, “Magnesium and its alloys applications in automotive industry”, The international journal of advanced manufacturing technology volume 39, 2008, pp. 861-865.
    [9] H. Watarai, “Trend of research and development for magnesium alloys”, Quarterly review 18, 2006, pp. 84-97.
    [10] I. Polmear, D. StJohn, J. F. Nie, M. Qian, “1-The light metals”, Light alloys (fifth edition) metallurgy of the light metals, 2017, pp. 1-29.
    [11] C. Moosbrugger, “Chapter 1 introduction to magnesium alloys”, Engineering properties of magnesium alloys, 2017, pp. 1-10.
    [12] S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, “Research on an Mg-Zn alloy as a degradable biomaterial”, Acta biomaterialia 6, 2010, pp. 626-640.
    [13] B. L. Mordike, T. Ebert, “Magnesium properties-applications-potential”, Materials science and engineering A 302, 2001, pp. 37-45.
    [14] A. A. Luo, “Recent magnesium alloy development for elevated temperature applications”, International materials reviews 49, 2004, pp. 13-30.
    [15] A. Kielbus, T. Rzychon, “Mechanical and creep properties of Mg-4Y-3RE and Mg-3Nd-1Gd magnesium alloy”, Procedia engineering 10, 2011, pp. 1835-1840.
    [16] K. Luo, L. Zhang, G. Wu, W. Liu, W. Ding, “Effect of Y and Gd content on the microstructure and mechanical properties of Mg-Y-RE alloys”, Journal of magnesium and alloys 7, 2019, pp. 345-354
    [17] L. Gao, R. S. Chen, E. H. Han, “Solid solution strengthening behaviors in binary Mg-Y single phase alloys”, Journal of alloys and compounds 472, 2009, pp. 234-240.
    [18] C. H. Caceres, D. M. Rovera, “Solid solution strengthening in concentrated Mg-Al alloys”, Journal of light metals 1, 2001, pp. 151-156.
    [19] C. H. Caceres, A. Blake, “The strength of concentrated Mg-Zn solid solutions”, Physica status solidi 194, 2002, pp. 147-158.
    [20] R. Lapovok, E. Zolotoyabko, A. Berner, V. Skripnyuk, E. Lakin, N. Larianovskyb, C. Xuc, E. Rabkinb, “Hydrogenation effect on microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloys”, Materials science and engineering A 719, 2018, pp. 171-177.
    [21] H. Okamoto, “Mg-Y (Magnesium-Yttrium)”, Journal of phase equilibria and diffusion 31, 2010, pp. 199.
    [22] B. L. Wu, Y. H. Zhao, X. H. Du, Y. D. Zhang, F. Wagner, C. Esling, “Ductility enhancement of extruded magnesium via yttrium addition”, Materials science and engineering A 527, 2010, pp.4334-4340.
    [23] L. Gao, R. S. Chen, E. H. Han, “Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys”, Journal of alloys and compounds 481, 2009, pp. 379-384.
    [24] J. Tan, Y. H. Sun, H. B. Xie, B. Z. Sun, Y. Qi, “Atomic-resolution investigation of Y-rich solid solution with an invariable orientation in Mg-Y binary alloy”, Journal of alloys and compounds 766, 2018, pp. 716-720.
    [25] C. C. Kammerer, N. S. Kulkarni, R. J. Warmack, Y. H. Sohn, “Interdiffusion and impurity diffusion in polycrystalline Mg solid solution with Al or Zn”, Journal of alloys and compounds 617, 2014, pp. 968-974.
    [26] D. Nagarajan, X. Ren, C. H. Cáceres, “Anelastic behavior of Mg-Al and Mg-Zn solid solutions”, Materials science and engineering: A 696, 2017, pp. 387-392.
    [27] R. Abbaschian, L. Abbaschian, R. E. Reed-Hill, Physical metallurgy principles 4th edition, 2008
    [28] A. Styczynski, C. Hartig, J. Bohlen, D. Letzig, “Cold rolling textures in AZ31 wrought magnesium alloy”, Scripta materialia 50, 2004, pp. 943-947.
    [29] H. Meckings, U. F. Kocks, “Kinetics of flow and strain-hardening”, Acta metallurgica 29, 1981, pp. 1865-1875.
    [30] M. X. Guo, M. P. Wang, L. F. Cao, R. S. Lei, “Work softening characterization of alumina dispersion strengthened copper alloys”, Materials characterization 58, 2007, pp. 928-935.
    [31] Y. C. Zhao, M. C. Zhao, R. Xu, L. Liu, J. X. Tao, C. Gao, C. Shuai, A. Atrens, “Formation and characteristic corrosion behavior of alternately lamellar arranged α and β in as-cast AZ91 Mg alloy”, Journal of alloys and compounds 770, 2019, pp. 549-558.
    [32] L. B. Ren, G. F. Quan, M. Y. Zhou, Y. Y. Guo, Z. Z. Jiang, Q. Tang, “Effect of Y addition on the aging hardening behavior and precipitation evolution of extruded Mg-Al-Zn alloys”, Materials science and engineering: A 690, 2017, pp. 195-207.
    [33] J. Miao, W. Sun, A. D. Klarner, A. A. Luo, “Interphase boundary segregation of silver and enhanced precipitation of Mg17Al12 phase in a Mg-Al-Sn-Ag alloy”, Scripta materialia 154, 2018, pp. 192-196.
    [34] B. Q. Shi, Y. Q. Cheng, H. Yan, R. S. Chen, W. Ke, “Hall-Petch relationship, twinning responses and their dependences on grain size in the rolled Mg-Zn and Mg-Y alloys”, Materials science and engineering A 743, 2019, pp. 558-566.
    [35] T. Sadhasivama, H. T. Kimb, S. Jungc, S. H. Rohd, J. H. Parka, H. Y. Junga, “Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review”, Renewable and sustainable energy reviews 72, 2017, pp. 523-534.
    [36] M. Szymanski, B. Michalski, M. Leonowicz, Z. Miazga, “Application of the HDDR method for recycling of Nd-Fe-B magnets”, IEEE international magnetics conference, 2015.
    [37] Y. Zhang, J. Han, S. Liu, F. Wan, H. Tian, X. Zhang, C. Wang, J. Yang, Y. Yang, “Coercivity enhancement by grain refinement for anisotropic Nd2Fe14B-type magnetic powders”, Scripta materialia 110, 2016, pp. 57-60.
    [38] M. Szymański, B. Michalski, M. Leonowicz, Z. Miazga, “Structure and properties of Nd-Fe-B alloy subjected to HDDR process”, Archives of metallurgy and materials 61, 2016, pp. 217-220.
    [39] L. Hu, Y. Wu, Y. Yuan, H. Wang, “Microstructure nanocrystallization of a Mg-3 wt.% Al-1 wt.% Zn alloy by mechanically assisted hydriding-dehydriding”, Materials letters 62, 2008, pp. 2984-2987.
    [40] Z. Z. Xie, J. F. Fan, H. B. Dong, F. Zhou, B. S. Xu, “Microstructure evolution and nano-crystalline production of Mg-9Al-Zn alloy during HDDR processing”, Journal of alloys and compounds 699, 2017, pp. 841-848.
    [41] H. Takamura, T. Miyashita, A. Kamegawa, M. Okada, “Grain size refinement in Mg-Al-based alloy by hydrogen treatment”, Journal of alloys and compounds 356-357, 2003, pp. 804-808.
    [42] A. Kamegawa, T. Funayama, J. Takahashi, H. Takamura, M. Okada, “Grain refinements of Al-Mg alloy by hydrogen heat-treatments”, Materials transactions 46, 2005, pp. 2449-2453.
    [43] T. Miyazawa, Y. Kobayashi, A. Kamegawa, H. Takamura, M. Okada, “Grain size refinements of Mg Alloy (AZ61, AZ91, ZK60) by HDDR treatments”, Materials transactions 45, 2004, pp. 384-387.
    [44] O. N. Senkov, F. H. Froes, “Thermohydrogen processing of titanium alloys”, International journal of hydrogen energy 24, 1999, pp. 565-576.
    [45] Z. Sun, W. Zhou, H. Hou, “Strengthening of Ti-6Al-4V alloys by thermohydrogen processing”, International journal of hydrogen energy 34, 2009, pp. 1971-1976.
    [46] Y. Zhang, S. Q. Zhang, “Hydrogenation characteristics of TI-6AL-4V cast alloy and its microstructural modification by hydrogen treatment”, International journal of hydrogen energy 22, 1997, pp. 161-168.
    [47] J. Nakahigashi, H. Yoshimura, “Ultra-fine grain refinement and tensile properties of titanium alloys obtained through protium treatment”, Journal of alloys and compounds 330-332, 2002, pp. 384-388.
    [48] H. Liu, J. Cao, P. He, J. C. Feng, “Effect of hydrogen on diffusion bonding of commercially pure titanium and hydrogenated Ti6Al4V alloys”, International journal of hydrogen energy 34, 2009, pp. 1108-1113.
    [49] X. Li, X. Chen, B. Li, N. Chen, J. Chen, “Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment”, Materials characterization 157, 2019.
    [50] H. Yoshimura, “Mezzoscopic grain refinement and improved mechanical properties of titanium materials by hydrogen treatments”, International journal of hydrogen energy 22, 1997, pp. 145-150.
    [51] H. Yoshimura, J. Nakahigashi, “Ultrafine grain refinement and superplasticity of titanium alloys obtained through protium treatment”, International journal of hydrogen energy 27, 2002, pp. 769-774.
    [52] X. W. Liu, Y. Q. Su, L. S. Luo, K. Li, F. Y. Dong, J .J. Guo, H. Z. Fu, “Effect of hydrogen treatment on solidification structures and mechanical properties of Ti-Al alloys”, International journal of hydrogen energy 36, 2011, pp. 3260-3267.
    [53] X. Li, G. Jia, F. Qu, H. Wu, J. Chen, “Ultrafine grain refinement and superplasticity of Ti-55 alloy obtained by hydrogen absorption and desorption”, Journal of materials engineering and performance 27, 2018, pp. 3472-3477.
    [54] B. Lagowski, “Metallography of hydrided ZE63 magnesium casting alloy”, A F S trans 84, 1976, pp. 151.
    [55] Z. Y. Zhao, “High performance ZM8 casting magnesium alloy processed by hydrogenation heat treatment (in Chinese)”, Aeronaut mater 1, 2011, pp. 1-7.
    [56] A. Züttel, “Materials for hydrogen storage”, Material today 6, 2003, pp. 24-33.
    [57] D. Chandra, J. J. Reilly, R. Chellappa, “Metal hydrides for vehicular applications: The state of the art”, JOM, 2006, pp. 26-32.
    [58] K. Fu, X. Jiang, Y. Guo, S. Li, J. Zheng, W. Tian, X. Li, “Experimental investigation and thermodynamic assessment of the yttrium hydrogen binary system”, Progress in natural science: Materials international 28, 2018, pp. 332-336.
    [59] K. Goc, W. Prendota, J. Przewo_znik, Ł. Gondek, C. Kapusta, A. Radziszewska, K. Mineo, A. Takasaki, “Magnetron sputtering as a method for introducing catalytic elements to magnesium hydride”, International journal of hydrogen energy 43, 2018, pp. 20836-20842.
    [60] “ASTM E8E8M-09 standard test methods for tension testing of metallic materials”, ASTM international, 2011.
    [61] Y. Yang, L. Peng, P. Fu, B. Hu, W. Ding, “Identification of NdH2 particles in solution-treated Mg-2.5%Nd (wt.%) alloy”, Journal of alloys and compounds 485, 2009, pp. 245-248.
    [62] 莊東漢,「材料破損分析」,五南出版社,民國 96 年。
    [63] A. Matin, F. F. Saniee, H. R. Abedi, “Microstructure and mechanical properties of Mg/SiC and AZ80/SiC nano-composites fabricated through stir casting method”, Materials science and engineering A 625, 2015, pp. 81-88.
    [64] M. H. Korayem, R. Mahmudi, W. J. Poole, “Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles”, Materials science and engineering A 519, 2009, pp. 198-203.
    [65] S. F. Hassan, M. Gupta, “Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement”, Materials science and engineering A 392, 2005, pp. 163-168.
    [66] S. S. Zhou, K. K. Deng, J. C. Li, S. J. Shang, W. Liang, J. F. Fan, “Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite”, Materials and design 63, 2014, pp. 672-677.
    [67] D. Setoyama, M. Ito, J. Matsunaga, H. Muta, M. Uno, S. Yamanaka, “Mechanical properties of yttrium hydride”, Journal of alloys and compounds 394, 2005, pp. 207-210.

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 2030/08/19 (校外網路)
    全文公開日期 2030/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE