簡易檢索 / 詳目顯示

研究生: 鄭宇翔
Yu-Shang-Cheng
論文名稱: 以磁控濺鍍法製備鉬基金屬玻璃薄膜之銷對盤磨潤性質之研究
Preparation and tribological analysis of the Molybdenum based thin film metallic glasses deposited by magnetron sputtering process
指導教授: 周育任
Yu-Jen Chou
口試委員: 施劭儒
Shao-Ju Shih
周育任
Yu-Jen Chou
李伯軒
Bo-Shiuan Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 114
中文關鍵詞: 鉬基金屬玻璃磁控濺鍍法X光繞射分析電子束掃描顯微鏡銷對盤磨耗試驗機
外文關鍵詞: Molybdenum-based metallic glasses, Magnetron sputter process, X-ray diffraction analyzer, Electron beam scanning microscope, Pin on disk machine tester
相關次數: 點閱:503下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

金屬玻璃(Metallic glasses)之發展,自1960年代以來已有眾多學術研究歷史。由於金屬玻璃是採用快速冷卻凝固法而形成非晶態之金屬,同時兼具有高強度、高化學穩定性、抗磨耗等性質,可運用在眾多之產業器材上當作披覆之材料,能使披覆之材料達到抗腐蝕、抗磨耗之特性。其中,鋯基金屬玻璃(Zirconium based metallic glasses)是現今最為主流,並最常做為學術研究之金屬玻璃材料,其原因為鋯金屬與其他高強度金屬有較高之鍵結強度,能夠在高溫之環境下仍保有良好之非晶結構;並且可利用自身較大之原子半徑大小,驅使與其他元素混合時,還能保有不規則排列之特性,使得整體金屬玻璃在面對過冷液相區(super cooled liquid region)時,更能抑制結晶相而形成非晶結構。雖然鋯金屬有眾多之優點,但被作為薄膜披覆之磨耗來進行研究卻較為稀少,受制原因在於鋯基金屬玻璃維氏硬度(Hv)僅只有520GPa左右,相較於眾多研究之金屬氮化膜與氧化膜,硬度卻有明顯不足,以至於必須找尋機械強度更高之金屬。

本研究實驗則選用鉬(Molybdenum)作為金屬玻璃之主要合金元素,鉬相比於鐵、鋯、鈦和鎳等金屬,是具有更高之彈性模量與硬度,在常溫600℃下有良好之化學穩定性,也有最低之熱膨脹係數,以保護材料減少因受熱而產多餘之殘留應力。本實驗製程方面,利用磁控濺鍍法製備鉬基金屬玻璃(Mo45Ti30Ni15Zr7Co3),可使金屬薄膜披覆在基材上作為抗磨耗研究使用,此製程方法不但能使金屬薄膜表面更光滑細緻,在製程溫度室溫之環境中,使得薄膜沒有殘留缺陷形成,披覆至基材上更加緻密。此外,金屬玻璃薄膜可藉由X光繞射分析儀鑑定薄膜之非晶結構,也可應用電子束掃描顯微鏡觀測金屬薄膜之表面形貌。最後,經由銷對盤磨耗試驗機測試金屬薄膜之抗磨耗分析,作為探討鉬基金屬玻璃之潛在可用性。


The development of metallic glasses has a long history of scientific research in the 20th century. Due to metallic glasses is an amorphous metal formed by rapid cooling and solidification method, and have high strength, high chemical stability, and good wear resistance properties, and always be used as a coating material on many industrial equipments. However, Zirconium based metallic glasses are the most popular material nowadays and are most often used as metallic glass materials for academic research. Then, Zirconium can use its own larger atomic radius ratio to keep maintain the characteristics of irregular arrangement when mixing with other elements, so that the overall metallic glass can suppress the crystalline phase and easily form an amorphous structure when facing the super cooled liquid region. However, zirconium metal has many advantages, but it is seldom used for research on mechanical wear due to the hardness of zirconium is insufficient. Therefore, it is necessary to find a metal with higher mechanical strength.

Meanwhile, Molybdenum based metallic glasses could be used on own research because of higher young’s modulus, hardness and wear resistance than zirconium metal and perform good chemical stabilization below
IV
temperature 600℃. Molybdenum have the lowest thermal expansion coefficient α(4.8μm/Km) to protect the substrate and also could decrease excess residual stress.
In this experiment, the molybdenum-based metallic glass (Mo45Ti30Ni15Zr7Co3) is prepared by magnetron sputtering process, which can coat the metal film on the substrate for research of wear resistance. In the environment of room temperature, there is no residual stress and the coating on the substrate have a higher density in thin film. In addition, the amorphous structure of the metal glass thin film can be identified by an X-ray diffraction analyzer, and the surface morphology of the metal film can also be observed by an electron beam scanning microscope. Finally, the resistance of the metal film can be tested by a pin-to-disk machine tester. Wear properties analysis is as a probe into the potential ability of molybdenum-based metallic glasses.

摘要 .................................................................................................................. I Abstract ........................................................................................................ III 目錄 .................................................................................................................V 圖目錄 ........................................................................................................... IX 表目錄 ........................................................................................................ XIII 第一章 研究介紹 ........................................................................................... 1 第二章 文獻回顧 ........................................................................................... 3 2-1 金屬玻璃發展的歷史 (The Development of Metallic glasses) ...... 3 2-2 金屬玻璃之性質 (Properties of metallic glasses) ........................... 4 2-2-1基本性質 (Based properties) .................................................. 4 2-2-2 機械性質 (Mechanical properties) ....................................... 5 2-2-3 疲勞性質 (Fatigued properties) ............................................ 6 2-2-4 磨潤性質 (Tribological properties) ...................................... 8 2-2-5 鉬基金屬玻璃 (Molybdenum based metallic glasses) ........ 8 2-2-6 金屬玻璃之抗磨耗性質 (Wear resistance of metallic glasses)…………………………………………………….10 2-3 玻璃轉換溫度 (Glass transition temperature)............................ 11 2-4 金屬玻璃形成能力 (The glass forming ability) ........................... 12 2-4-1 凝固學理論 (Theory of coagulation) .................................. 12 2-4-2 金屬玻璃非晶性質 (Amorphous properties) ..................... 14 2-4-3 Inoue 法則 (Inoue,s rule) ..................................................... 15 VI 2-5金屬玻璃製備之方法 (The preparation methods of metallic glasses)............................................................................................. 18 2-5-1熔體旋轉急冷法 (Rapid solidification processing) ............ 18 2-5-2 電子束熱蒸鍍法 (Thermal evaporation deposition) ......... 19 2-5-3 磁控濺鍍法 (Magnetron sputtering deposition) ................ 21 2-5-4 脈衝雷射沉積法 (Pulsed laser deposition) ......................... 26 2-6 薄膜生長機制 (Growth mechanism of thin film) ........................ 27 2-7 磨潤理論 (Tribology) ..................................................................... 30 2-8潤滑機制種類 ( Type of lubricated mechanism) ........................ 34 2-9銷對盤之磨潤機制 (Pin on disk machine) ................................... 36 第三章 實驗方法 ......................................................................................... 37 3-1 實驗方法與設計 (Procedure and experiment design) ................ 37 3-2 磨潤材料介紹 (Tribological material) .......................................... 39 3-2-1 鉬金屬靶材 (Pure Mo target) .............................................. 39 3-2-2鉬基金屬合金靶材 (Mo45Ti30Ni15Zr7Co3 target) ............. 39 3-2-3 鋯鈦鎳金屬合金靶材 (Zr50Ti30Ni20 target) ...................... 40 3-2-4 7075-T6鋁合金基板 (7075-T6 alumina substrate) ........... 40 3-2-5 S45C碳鋼銷桿件 (S45C carbon pin) ................................ 41 3-2-6 實驗靶材與基板之規格 (Experimental targets and substrate size) ........................................................................... 41 3-3實驗流程與實驗參數(Procedure of experiment and parameter) ......................................................................................................... 43 3-4 金屬玻璃之膜厚製程 (Preparation of metallic glasses thin film) ......................................................................................................... 45 VII 3-5 實驗設備 (Experiment instrument) .............................................. 47 3-6設備儀器分析 (Experimental equipment analysis) ..................... 48 3-6-1 X光繞射分析儀 (X ray diffractometer) ........................... 48 3-6-2 雙束場發離子束聚焦顯微鏡 (Focused ion beam scanning microscope) ........................................................................... 49 3-6-3 高功率磁控濺鍍機 (Magnetron sputtering machine) ...... 50 3-6-4 奈米壓痕試驗機 (Nano indenter) ....................................... 51 3-6-4-1 金屬玻璃奈米壓痕原理 (The principle of Nano indention) ........................................................................ 51 3-6-5 迴轉磨耗試驗機 (Pin on disk machine) ............................. 53 3-6-5-1磨耗試驗參數 (The parameters of wear) .................... 54 3-6-5-2 磨潤之濺鍍參數 (The parameters of the sputtering) . 56 3-6-6 綠光干涉儀 (Coherence correlation interferometry) ....... 58 3-6-7 雷射共軛聚焦顯微鏡 (Confocal laser scanning microscope) ................................................................................................ 58 第四章 實驗結果 ......................................................................................... 60 4-1金屬玻璃之晶向分析 (XRD analysis) ....................................... 60 4-2 表面形貌觀察與膜厚(Surface morphology and thin film) .... 62 4-2-1 7075-T6鋁合金表面形貌 (7075-T6 surface morphology) ............................................................................................. 62 4-2-2 金屬玻璃薄膜厚度之形貌 (Metallic glasses thin film morphology) ...................................................................... 65 4-3鋁合金表面薄膜成分分析 (EDS analysis) ................................. 67 4-4 奈米壓痕實驗結果 (Experimental results of Nano indention) 71 VIII 4-5 銷對盤之磨耗試驗分析結果 (The parameters of pin on dick) ...................................................................................................... 74 4-5-1磨耗表面結果 (Wear surface) ............................................. 74 4-5-2材料磨耗率與摩擦係數結果(Wear rate and coefficient of friction ) ................................................................................. 77 第五章 結果探討 ........................................................................................ 83 5-1 薄膜製成探討 (Thin film process analysis) .............................. 83 5-2金屬玻璃薄膜之成形機制探討 (Mechanism of metallic glasses thin film forming) ........................................................................ 84 5-3邊界潤滑探討 (Boundary lubrication analysis) ....................... 86 5-4金屬玻璃之機械特性探討 (Analysis of mechanical properties of metallic glass) .......................................................................... 86 第六章 結論 ................................................................................................. 89 第七章 未來工作 ........................................................................................ 90 參考文獻 ....................................................................................................... 91

[1] Y.-T. Cheng, W.L. Johnson, Disordered Materials: A Survey of Amorphous Solids, Science Org, 235 (1987) 997.
[2] WANG Wei- Hu, A brief history of metallic glasses(金屬玻璃研究簡史), (Institute of Physics, Chinese Academy of Sciences) ,Beijing 100190.
[3] J.F. Löffler, Bulk metallic glasses Intermetallics, 11 (2003) 529-540.
[4] W.-H. Wang, C. Dong, C. Shek, Bulk metallic glasses Materials Science and Engineering: R: Reports, 44 (2004) 45-89.
[5] J.P. Chu, J. Jang, J. Huang, H. Chou, Y. Yang, J. Ye, Y.-C. Wang, J. Lee, F. Liu, P. Liaw, Thin film metallic glasses: Unique properties and potential applications Thin Solid Films, 520 (2012) 5097-5122.
[6] H.J. Xian, C.R. Cao, J.A. Shi, X.S. Zhu, Y.C. Hu, Y.F. Huang, S. Meng, L. Gu, Y.H. Liu, H.Y. Bai, W.H. Wang, Flexible strain sensors with high performance based on metallic glass thin film Applied Physics Letters, 111 (2017) 121906.
[7] W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses Progress in Materials Science, 57 (2012) 487-656.
[8] W. Wang, Elastic moduli and behaviors of metallic glasses Journal of Non-Crystalline Solids, 351 (2005) 1481-1485.
[9] W.H. Wang, Correlations between elastic moduli and properties in bulk metallic glasses Journal of Applied Physics, 99 (2006) 093506.
[10] L. Wang, H. Bei, Y. Gao, Z.P. Lu, T. Nieh, Effect of residual stresses on the hardness of bulk metallic glasses Acta Materialia, 59 (2011) 2858-2864.
[11] M.M. Trexler, N.N. Thadhani, Mechanical properties of bulk metallic glasses Progress in Materials Science, 55 (2010) 759-839.
[12] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys Acta Materialia, 48 (2000) 279-306.
[13] A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys Acta Materialia, 59 (2011) 2243-2267.

[14] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S. Jang, Y. Gao, P.K. Liaw, Thin-film metallic glasses for substrate fatigue-property improvements Thin Solid Films, 561 (2014) 2-27.
[15] M. Ashby, A.L. Greer, Metallic glasses as structural materials Scripta Materialia, 54 (2006) 321-326.
[16] Z.-Z. Yuan, S.-L. Bao, Y. Lu, D.-P. Zhang, L. Yao, A new criterion for evaluating the glass-forming ability of bulk glass forming alloys Journal of Alloys and Compounds, 459 (2008) 251-260.
[17] Z. Lu, C. Liu, A new glass-forming ability criterion for bulk metallic glasses Acta materialia, 50 (2002) 3501-3512.
[18] J. Kim, J.S. Kyeong, M.-H. Ham, A.M. Minor, D.H. Kim, E.S. Park, Development of Mo‐Ni‐Si‐B metallic glass with high thermal stability and H versus E ratios Materials & Design, 98 (2016) 31-40.
[19] L. Lai, T. Liu, X. Cai, M. Wang, S. Zhang, W. Chen, S. Guo, High-temperature Mo-based bulk metallic glasses Scripta Materialia, 203 (2021) 114095.
[20] H.-h. Xi, P.-f. He, H.-d. Wang, M. Liu, S.-y. Chen, Z.-g. Xing, G.-z. Ma, Z.-l. Lv, Microstructure and mechanical properties of Mo coating deposited by supersonic plasma spraying International Journal of Refractory Metals and Hard Materials, 86 (2020) 105095.
[21] X.-Q. Chen, H. Niu, D. Li, Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses Intermetallics, 19 (2011) 1275-1281.
[22] T. Gloriant, Microhardness and abrasive wear resistance of metallic glasses and nanostructured composite materials Journal of non-crystalline solids, 316 (2003) 96-103.
[23] Z.P. Lu, C.T. Liu, Glass Formation Criterion for Various Glass-Forming Systems Physical Review Letters, 91 (2003) 115505.
[24] S. Korkmaz, İ.A. Kariper, Glass formation, production and superior properties of Zr-based thin film metallic glasses (TFMGs): A status review Journal of Non-Crystalline Solids, 527 (2020) 119753.
[25] W.L. Johnson, J.H. Na, M.D. Demetriou, Quantifying the origin of metallic glass formation Nature Communications, 7 (2016) 10313.

[26] W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology MRS Bulletin, 24 (1999) 42-56.
[27] S. Bates, G. Zografi, D. Engers, K. Morris, K. Crowley, A. Newman, Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns Pharmaceutical research, 23 (2006) 2333-2349.
[28] M.C. Rowe, B.J. Brewer, AMORPH: A statistical program for characterizing amorphous materials by X-ray diffraction Computers & Geosciences, 120 (2018) 21-31.
[29] A. Inoue, High strength bulk amorphous alloys with low critical cooling rates (overview) Materials Transactions, JIM, 36 (1995) 866-875.
[30] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element Materials Transactions, 46 (2005) 2817-2829.
[31] L. Xia, S.S. Fang, Q. Wang, Y.D. Dong, C.T. Liu, Thermodynamic modeling of glass formation in metallic glasses Applied Physics Letters, 88 (2006) 171905.
[32] A.-H. Cai, H. Wang, X.-S. Li, H. Chen, Y. Zhou, Z.-S. Wan, New model of Gibbs free energy difference for bulk metallic glasses Materials Science and Engineering: A, 435-436 (2006) 478-483.
[33] A.-h. Cai, X. Xiong, Y. Liu, Y. Zhou, W.-k. An, Y. Luo, Choose Gibbs free energy difference model for metallic glasses Journal of Non-Crystalline Solids, 356 (2010) 1498-1501.
[34] F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses Acta metallurgica, 25 (1977) 407-415.
[35] A. Takeuchi, A. Inoue, Quantitative evaluation of critical cooling rate for metallic glasses Materials Science and Engineering: A, 304-306 (2001) 446-451.
[36] L.A. Jacobson, J. McKittrick, Rapid solidification processing Materials Science and Engineering: R: Reports, 11 (1994) 355-408.
[37] W. Kurz, R. Trivedi, Rapid solidification processing and microstructure formation Materials Science and Engineering: A, 179 (1994) 46-51.

[38] E.J. Lavernia, T.S. Srivatsan, The rapid solidification processing of materials: science, principles, technology, advances, and applications Journal of Materials Science, 45 (2010) 287-325.
[39] B. Kim, I.-H. Kim, J. Lee, B.-K. Min, M.-w. Oh, S. Park, H.W. Lee, m.-h. Kim, Electron Transport Properties of Rapidly Solidified (GeTe)x(AgSbTe2)1-x Pseudobinary Thermoelectric Compounds Electronic Materials Letters - Electron Mater Lett, 6 (2010) 181-185.
[40] G.W. White, SAE Technical Paper Series–(History Corner – A Short History of Reactive Evaporation), 1973, page(51).
[41] P. Savale, Physical vapor deposition (PVD) methods for synthesis of thin films: A comparative study Arch. Appl. Sci. Res, 8 (2016) 1-8.
[42] J. Koskinen, 4.02 - Cathodic-Arc and Thermal-Evaporation Deposition, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (Eds.) Comprehensive Materials Processing, Elsevier, Oxford, 2014, page (3-55).
[43] Donald M. Mattox , SAE Technical Paper Series–(History Corner–Magnetron Sputter Deposition History,(2015),page(45).
[44] F. M. Penning,Unite state patent-2,146,025,(1937)
[45] M. Amoretti, G. Bettega, F. Cavaliere, M. Cavenago, F.D. Luca, R. Pozzoli, M. Romé, Cylindrical Penning trap for the study of electron plasmas Review of Scientific Instruments, 74 (2003) 3991-3997.
[46] K.Wasa, I. Kanno, H. Kotera, Sputtering Phenomena, Handbook of Sputtering Technology (Second Edition),William Andrew Publishing, Oxford, (2012), page (41-75).
[47] R.D. Arnell, P.J. Kelly, Recent advances in magnetron sputtering Surface and Coatings Technology, 112 (1999) 170-176.
[48] AdNaNoTek Corporation-(Solutions for UHV Deposition Systems Handbook),(2015)
[49] G. Bräuer, B. Szyszka, M. Vergöhl, R. Bandorf, Magnetron sputtering–Milestones of 30 years Vacuum, 84 (2010) 1354-1359.
[50] A. Baptista, F. Silva, J. Porteiro, J. Míguez, G. Pinto, Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands Coatings, 8 (2018) 402.

[51] W. Gill, E. Kay, Efficient low pressure sputtering in a large inverted magnetron suitable for film synthesis Review of Scientific Instruments, 36 (1965) 277-282.
[52] I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review Surface and Coatings Technology, 127 (2000) 203-218.
[53] A. Furuya, S. Hirono, Target magnetic‐field effects on deposition rate in rf magnetron sputtering Journal of Applied Physics, 68 (1990) 304-310.
[54] Y. Wang, L. Liu, H. Liu, X. Song, D. Hong, D. Xu, S. Zhu, Y. Li, Control of Self-assembled Particles on Thin YSZ Film Deposited by PLD Journal of Superconductivity and Novel Magnetism, 25 (2011) 11-16.
[55] J. Schou, Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film Applied Surface Science, 255 (2009) 5191-5198.
[56] K. Oura, M. Katayama, A.V. Zotov, V.G. Lifshits, A.A. Saranin, Growth of Thin Films, in: K. Oura, M. Katayama, A.V. Zotov, V.G. Lifshits, A.A. Saranin (Eds.) Surface Science: An Introduction, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, 357-387.
[57] J. Hora, C. Hall, D. Evans, E. Charrault, Inorganic Thin Film Deposition and Application on Organic Polymer Substrates Advanced Engineering Materials, 20 (2018) 1700868.
[58] Surfaces, Growth and Strain Relaxation-University of Warick,(2010).
[59] Bharat Bhushan , Introdution To Tribology,(2013),page(1-7).
[60] A.W. Batchelor, G.W. Stachowiak, Tribology in materials processing Journal of Materials Processing Technology, 48 (1995) 503-515.
[61] T. A. Stolarski , Tribology in Machine Design,(2000).
[62] A. Tsujimoto, W.W. Barkmeier, N.G. Fischer, K. Nojiri, Y. Nagura, T. Takamizawa, M.A. Latta, M. Miazaki, Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors Japanese Dental Science Review, 54 (2018) 76-87.
[63] H. Christensen, A theory of mixed lubrication Proceedings of the Institution of Mechanical Engineers, 186 (1972) 421-430.
[64] E.V. Zaretsky, Liquid lubrication in space Tribology International, 23 (1990) 75-93.

[65] Marcus Bjorling, Friction in Elasto Hydrodynamically Lubricated contacts,(2011),page(21-25).
[66] K. Komvopoulos, N. Saka, N.P. Suh, The Mechanism of Friction in Boundary Lubrication Journal of Tribology, 107 (1985) 452-462.
[67] A. Misra, J. Hirth, R. Hoagland, Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites Acta materialia, 53 (2005) 4817-4824.

QR CODE