簡易檢索 / 詳目顯示

研究生: 呂學儒
Xue-Ru Lu
論文名稱: 汽油均質進氣壓燃於增程發電引擎之實現
Realization of Gasoline HCCI on a Range Extender Genset
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 呂百修
Pai-Hsiu Lu
吳浴沂
Yuh-Yih Wu
陳亮光
Liang-kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 133
中文關鍵詞: 汽油HCCI均質進氣壓燃引擎燃燒熱釋放燃燒時間點燃燒穩定性排氣背壓控制閥
外文關鍵詞: Gasoline, Homogenous Charge Compression Ignition Engine (H, Back Throttle
相關次數: 點閱:318下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

均質進氣壓燃引擎極有可能成為新一代的車輛動力或油電混合發電系統, 提供經濟、
高效率且低污染的動力來源, 均質進氣壓燃引擎有著如柴油引擎般的高效率及遠較汽油
引擎低之 NOX 排放。 然而, 由於均質進氣壓燃引擎點火時間無法直接進行控制, 不如
一般汽油引擎及柴油引擎, 其點火時間可透過火星塞跳火時間及噴油時間來決定, 均質
進氣壓燃引擎之點火條件, 完全依靠汽缸內油氣混合物達到自燃的狀態來產生, 因此控
制均質進氣壓燃引擎之自燃時間點便成為了主要研究課題。
本研究採用華擎機械工業股份有限公司所開發之500c.c 單缸引擎, 於引擎本體加裝
進氣加熱系統及排氣背壓控制閥 (Back Throttle) 和所有必要之量測系統, 包含進氣流
量、 進、 排氣管內溫度及壓力、 噴油量、 曲軸角度和透過缸內壓力量測值估測燃燒時間
點 ( CA10、 CA50、 CA90等)。 研究著重於實作方面來進行, 使用92無鉛汽油於進氣加
熱狀態下, 固定噴油量改變進氣溫度; 固定進氣溫度, 調整排氣背壓閥 (Back Throttle)
開度, 透過排氣背壓閥控制燃燒完畢的廢氣殘留於汽缸內部之比例, 進而改變燃燒時間
點; 利用調整節氣門及排氣背壓閥開度之方式, 降低進氣加熱溫度, 使引擎能於較符合
實車運作狀況下進行 HCCI 模式運轉。 所有實驗數據將被用來分析燃燒穩定性及引擎
效率, 尋找 HCCI 的適當操作點。
關鍵字 : 汽油 HCCI 均質進氣壓燃引擎、 燃燒熱釋放、 燃燒時間點、 燃燒穩定性、 排氣
背壓控制閥 (Back Throttle)


Homogeneous Charge Compression Ignition (HCCI) engines provide a possible
solution for affordable, efficient and clean-burning power sources for either sta-
tionary power generator or advanced vehicles. The auto-ignition timing of HCCI
combustion is determined by the cylinder charge conditions, rather than the spark
timing or the fuel injection timing that are used to initiate combustion in SI and
CI engines, respectively. Though the auto-ignition timing control of HCCI com-
bustion becomes the most important assignment.
A single-cylinder 500 c.c.
engine developed by China Engine Corporation
(CEC) is augmented with an back throttle valve system to facilitate the con-
trol development of HCCI combustion. Realtime estimation of heat release rate
and combustion timings is obtained from the cylinder pressure measurement in
the MATLAB xPC-target environment. The main objective is to anaylze the com-
bustion timing of the fuel burned (CA10、CA50、CA90) and standard deviation of
combustion.
Research focuses on the implementation aspects, with the use of gasoline at the
different inlet temperature and fixed injection quantity ; Fixed intake temperature,
adjust the back throttle valve ratio to change amount of burned gas remaining in
the cylinder; By adjusting the throttle valve and the back throttle valve to reduce
the intake heating temperature, then the HCCI combustion engine can operate on
a actual vehicle under a normal condition. All experimental data will be used to
analyze the combustion stability, engine efficiency and finding a suitable operating
point.

1 緒論 1 1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 實驗設備介紹 12 2.1 實驗設備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 實驗平台 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 實驗引擎 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 車輛 ECU 快速開發套件-MotoTron 系統 . . . . . . . . . . . . . . . . 15 2.4.1 Mototron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 MotoHawk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.3 MotoTune . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 點火訊號放大電路系統 . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 xPC-Target量測系統 . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.1 xPC-Target . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.2 xPC軟體需求 . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6.3 xPC硬體需求 . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6.4 xPC CPUoverload . . . . . . . . . . . . . . . . . . . . . . . 21 2.6.5 xPC 檔案儲存 . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6.6 數據擷取系統(Data Acquisition System 縮寫為 DAS) . . . . . 22 2.7 進氣加熱裝置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.8 火星塞式汽缸壓力計 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.9 汽缸壓力計電荷放大器 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.10 進排氣溫度計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.11 進排氣壓力計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.12 進氣流量計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.13 引擎動力計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.14 曲軸角度編碼器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.15 節氣門拉線馬達 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.16 空燃比計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.17 NOX感測器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.18 燃油流量計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 實驗方法 40 3.1 實驗架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 燃油選擇 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 SI模式操作條件及 Engine Map . . . . . . . . . . . . . . . . . . . . . 43 3.4 進氣加熱設定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5 SI模式切換至 HCCI 模式控制策略 . . . . . . . . . . . . . . . . . . . 45 3.6 HCCI模式實驗操作條件 . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.7 燃燒分析系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.7.1 汽缸體積模型 . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.7.2 燃燒熱釋放模型 . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.7.3 平均有效壓力計算 . . . . . . . . . . . . . . . . . . . . . . . . 54 4 實驗數據與討論 55 4.1 SI模式實驗數據 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.1 SI模式汽缸壓力 . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.2 SI模式進排氣溫度、 壓力、 流量 . . . . . . . . . . . . . . . . . 58 4.1.3 SI模式比熱比γ估算 . . . . . . . . . . . . . . . . . . . . . . . 61 4.1.4 SI模式燃燒分析 . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1.5 SI模式 IMEP 分析 . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 HCCI模式改變進氣加熱溫度實驗數據 . . . . . . . . . . . . . . . . . . 68 4.2.1 汽缸壓力數據 . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2.2 進排氣溫度、 進排氣壓力及進氣流量數據 . . . . . . . . . . . . 70 4.2.3 比熱比γ估算 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.4 燃燒分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.5 燃燒穩定性分析 . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2.6 IMEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3 HCCI模式改變排氣背壓控制閥 (Back Throttle) . . . . . . . . . . . . 92 4.3.1 汽缸壓力數據 . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3.2 進排氣溫度、 壓力、 空燃比及進氣流量數據 . . . . . . . . . . . 94 4.3.3 燃燒分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.3.4 IMEP分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.4 SI、HCCI 模式數據比較 . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.4.1 汽缸壓力比較 . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.4.2 燃燒分析比較 . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.3 性能比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.5 降低進氣加熱溫度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.5.1 汽缸壓力數據 . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.5.2 進排氣溫度、 壓力、 流量及空燃比 . . . . . . . . . . . . . . . . 120 4.5.3 燃燒時間點 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5.4 性能分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5 結論與未來展望 127 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 附錄 A (符號定義) 130 附錄 B (感測器電壓轉換物理量表) 131 參考文獻 132

[1] 林育志.
「均質進氣壓燃式引擎自燃特性研究」, 國立台北科技大學車輛工程系, 碩士論文, 台北
(2008).
[2] 林承佑. 引擎燃燒熱釋放率之即時估測研究, 國立台灣科技大學機械工程系, 碩士論文, 台北 (2010).
[3] 林建鴻. 均質進氣壓燃引擎之參考模型適應控制, 國立台灣科技大學機械工程系, 碩士論文, 台北
(2011).
[4] 羅華強, Matlab5.3simulink3.0範例入門. 全華科技圖書股份有限公司, 台北.
[5] H. C. Watson, P. Mehrani, and M. J. Brear, “The always lean burn spark ignition (ALSI)
engine its performance and emissions,” SAE Paper 2009-01-0932.
[6] C. W. Wu, R. H. Chen, J. Y. Pu, and T. H. Lin, “The influence of air fuel ratio on engine
performance and pollutant emission of an si engine using ethanol gasoline blended fuels,”
Atmospheric Environment, vol. 38, 2004.
[7] R. H. STANGLMAIER and C. E. ROBERTS, “Homogeneous charge compression ignition
(hcci): benefits, compromises, and future engine applications,” SAE Paper 1999-01-3682.
[8] R. H. Thring, “Homogeneous-charge compression-ignition (hcci) engines,” SAE Paper
892068.
[9] J. B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill,New York(1988).
[10] D.-I. C. Baumgarten, Mixture formation in internal combustion engines. Springer, 2006.
[11] B. J. S. F. R. A. M. W. J. O. Olsson, P. Tunestal and D. Assanis, “Compression ratio
influence on maximum load of a natural gas fueled hcci engine,” SAE paper 2002-01-0111.
[12] D. S. Stanglmaier and E. Roberts., “Homogeneous charge compression ignition (hcci): Ben-
efits, compromises, and future engine application.,” SAE paper 1999-01-3682.
[13] P. Najt and D. Foster., “Compression-ignited homogeneous charge combustion.,” SAE paper
830264, 1983.
[14] R. H. Thring., “Homogeneous-charge compression-ignition (hcci) engines.,” SAE paper
892068, 1989.
[15] M. Christensen, B. Johansson, P. Amneus, and F. Mauss, “Supercharged homogeneous
charge compression ignition,” SAE Paper 980787.
[16] F. M. M. C. B. J. P. Amneus, D. Nilson, “Homogeneous charge compression ignition engine:
experiments and detailed kinetic calculations,” COMODIA.
[17] M. F. Brunt, Rai, and A. L. Emtage, “The calculation of heat release energy from engine
cylinder pressure data,” SAE Paper 981052.
[18] M. Iida, T. Aroonsrisopon, M. Hayashi, and D. F. J. Martin, “The effect of intake air
temperature, compression ratio and coolant temperature on the start of heat release in an
hcci (homogeneous charge compression ignition) engine,” SAE Paper 2001-01-1880.
[19] X.-C. Lu, W. Chen, and Z. Huang, “Afundamentalstudy on the control of the hccicombus-
tion and emissions by fuel design concept combined with controllable egr. part 2. effect of
operating conditions and egr on hccicombustion,” Fuel, vol. 84, p. 1084 1092, June 2005.
[20] M. Y. Au, J. W. Girard, R. Dibble, D. Flowers, S. M. Aceves, J. Martinez-Frias, R. Smith,
C. Seibel, and U. Maas, “1.9-liter four-cylinder hcci engine operation with exhaust gas
recirculati,” SAE Paper 2001-01-1880.
[21] C. J. Chiang and A. G. Stefanopoulou, “Steady-state multiplicity and stability of thermal
equilibria in homogeneous charge compression ignition (hcci) engines,” 43rd IEEE Confer-
ence on Decision and Control.
[22] A. K. A. Rakesh Kumar Maurya, “Experimental investigation on the effect of intake air
temperature and airfuel ratio on cycle-to-cycle variations of hcci combustion and perfor-
mance parameters,” Applied Energy.
[23] A. A. C. R. K. Ahmad Ghazimirsaied, Mahdi Shahbakhti, “Hcci engine cyclic variation
characterization using both chaotic and statistical approach,” Proceedings of Combustion
Institute-Canadian Section,Spring Technical Meeting.
[24] C. R. K. Mahdi Shahbakhti, “Physics based control oriented model for hcci combustion
timing,” Journal of Dynamic Systems, Measurement, and Control.
[25] S. J. Chapman, MATLAB Programming for Engineers. 全華科技圖書股份有限公司, 台北 .
[26] Mathworks, xPC Target 4 User’s Guide. The MathWorks Inc.
[27] R. N. Brady, Automotive Electronics and Computer Systems. Prentice Hall.
[28] T. Bancha and L. Jau-Huai, Examination of HCCI (Homogeneous Charge Compression
Ignition) Mode on Low Compression Ratio Engine. 中國機械工程學會第二十五屆全國學術研
討會論文集 .

QR CODE