簡易檢索 / 詳目顯示

研究生: 陳又慈
YU-TZU CHEN
論文名稱: 微波及毫米波共平面波導多導線交趾式耦合器研製
Development of Microwave and Millimeter-wave Coplanar Waveguide (CPW) Multi-Conductor Interdigitated Couplers
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 瞿大雄
Tah-Hsiung Chu
王蒼容
Chun-Long Wang
張智林
Chih-Lin Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 48
中文關鍵詞: 耦合器共平面波導
外文關鍵詞: coupled line
相關次數: 點閱:180下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要係使用共平面波導研製多型微波及毫米波多導線交趾式耦合器。微波頻段之多導線交趾式耦合器實現於印刷電路基板,並將所研製之耦合器應用於設計寬頻平衡式放大器,由於本論文所研製之多導線耦合器係由非對稱雙線耦合線演化而來,為了準確地萃取出非對稱耦合線之c與π模態阻抗,本論文提出一電腦模擬輔助設計方法,以克服目前商用電磁全波模擬軟體之模擬限制。由實驗結果可驗證本論文提出之設計步驟不僅有利於多導線交趾式耦合器之設計,且可同時於兩輸出埠上獲得一寬頻且平坦的相位差特性。此外,90相位頻寬特性優異之耦合器進一步應用於實現平衡式放大器,使其具有109 %輸入及輸出端反射損失頻寬。毫米波頻段之多導線交趾式耦合器則使用整合被動元件(IPD)製程製作,因兩正交模態在IPD不均勻介質中傳播將導致不同之相位速度,本論文提出三型具相速度補償之電路結構。由模擬與量測結果驗證得知,所提出之電路結構可有效改善c與π模態相位常數差異。


    This thesis develops a variety of the microwave and millimeter-wave multi-conductor interdigitated couplers using the coplanar waveguides (CPWs). For microwave range, the CPW multi-conductor interdigitated couplers are realized on the printed circuit board (PCB) substrate, and then applied to implement a balanced amplifier with a broadband return loss bandwidth. Since the multi-conductor couplers are evolved from asymmetrical two-conductor coupled-line, to accurately extract the c- and π-mode impedances of the multi-conductor asymmetrical coupled lines, a simulator-aided design method is proposed in this thesis to overcome the limitation of the commercial electromagnetic simulator. The experimental results demonstrate that the proposed design procedures not only reduce the design complexity and increase the design flexibility, but also develop couplers with wideband and flat quadrature phase responses between output ports. Moreover, as the developed interdigitated couplers are applied to implement a balanced amplifier, one can achieve a 109 % 10-dB return loss bandwidth. For millimeter-wave range, the CPW multi-conductor interdigitated couplers are implemented using the integrated passive device (IPD) technology. Since the IPD nonhomogenous medium will lead to different c- and π-mode phase velocities, this thesis proposes three circuit structures to compensate the difference of c- and π-mode phase constants. The effectiveness of newly proposed structures has been experimentally demonstrated.

    摘要 Abstract 目錄 第一章 緒論 1-1 研究動機及文獻探討 1-2 章節說明 第二章 使用共平面波導研製微波多導線交趾式耦合器 2-1 共平面波導耦合器設計 2-2 單面交趾式耦合器研製 2-3 雙面交趾式耦合器研製 2-4 平衡式放大器應用及研製 第三章 使用整合被動元件製程(IPD)研製毫米波雙面交趾式耦合器 3-1被動元件製程簡介 3-2雙面交趾式耦合器設計 3-3雙面交趾式耦合器量測結果 第四章 結論 參考文獻

    [1] D. M. Pozar, Microwave Engineering, 3rd ed. New York: John Wiley & Sons, 2005.
    [2] J. Lange, “Interdigitated stripline quadrature hybrid,” IEEE Trans. Microw. Theory Tech., vol. MTT-17, pp. 1150–1151, Dec. 1969.
    [3] W. P. Ou, “Design equations for an interdigitated directional coupler,” IEEE Trans. Microw. Theory Tech., vol. MTT-23, pp. 253–255, Feb. 1975.
    [4] A. Presser, “Interdigitated microstrip coupler design,” IEEE Trans. Microw. Theory Tech., vol. MTT-26, pp. 801–805, Oct. 1978.
    [5] Y. Tajima and S. Kamihashi, “Multiconductor couplers,” IEEE Trans. Microw. Theory Tech., vol. MTT-26, pp. 795–801, Oct. 1978.
    [6] P. K. Ikalainen and G. L. Matthaei, “Wide-band, forward-coupling microstrip hybrids with high directivity,” IEEE Trans. Microw. Theory Tech., vol. MTT-35, pp. 719–725, Aug. 1987.
    [7] V. Tulaja, B. Schiek, and J. Kohler, “An interdigitated 3-dB coupler with three strips,” IEEE Trans. Microw. Theory Tech., vol. MTT-26, pp. 643–645, Sep. 1978.
    [8] S. M. Perlow and A. Presser, “The interdigitated three-strip coupler,” IEEE Trans. Microw. Theory Tech., vol. MTT-32, pp. 1418–1422, Oct. 1984.
    [9] J.-C. Chiu, C.-M. Lin, and Y.-H. Wang, “A 3-dB quadrature coupler suitable for PCB circuit design,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 3521–3525, Sep. 2006.
    [10] C. G. Cristal, “Coupled-transmission line directional couplers with coupled lines of unequal characteristic impedances,” IEEE Trans. Microw. Theory Tech., vol. MTT-14, pp. 337–346, Jul. 1966.
    [11] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 1999.
    [12] C. P. Wen, “Coplanar waveguide directional couplers, ” IEEE Trans. Microw. Theory Tech., Jun. 1970, pp. 318-322.
    [13] L. Han, K. Wu, and X.-P. Chen, “Accurate synthesis of four-line interdigitated coupler,” IEEE Trans. Microw. Theory Tech., vol. 57, pp. 2444–2455, Oct. 2009.
    [14] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines. Norwood, MA: Artech House, 1996.
    [15] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Compon., Hybrids, Manufact. Technol., vol. 15, pp. 483–490, Aug. 1992.
    [16] K. W. Kobayashi, M. Nishimoto, L. T. Tran, H. Wang, J. Cowles, T. R. Block, J. Elliott, B. Allen, A. K. Oki, and D. C. Streit, “A 44 GHz InP-based HBT double-balanced amplifier with novel current re-use biasing,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., 1998, pp. 267–270.
    [17] R. S. Engelbrecht, and K. Kurokawa, “A wide-band low noise L-band balanced transistor amplifier,” Proc. IEEE, vol.53, pp. 237–248, Mar. 1965.
    [18] T. Imaoka, S. Banba, A. Minakawa, and N. Imai, “Millimeter-wave wide-band amplifiers using multilayer MMIC technology,” IEEE Trans. Microw. Theory Tech., vol. 45, pp. 95–101, Jan. 1997.
    [19] C.-H. Tseng and C.-L. Chang, “Improvement of return loss bandwidth of balanced amplifier using metamaterial-based quadrature power splitters,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 269-271, Apr. 2008.

    無法下載圖示 全文公開日期 2019/07/24 (校內網路)
    全文公開日期 2024/07/24 (校外網路)
    全文公開日期 2024/07/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE