簡易檢索 / 詳目顯示

研究生: 江吉雄
Gi-Shiung Chiang
論文名稱: 液晶/高分子混摻系統相分離及結晶化動力學之研究
A study on kinetics of phase separation and crystallization in liquid crystal/polymer blending systems
指導教授: 洪伯達
Po-Da Hong
口試委員: 莊偉綜
Wei-Tsung Chuang
陳志堅
Jyh-Chien Chen
廖文彬
Wen-Bin Liau
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 68
中文關鍵詞: 高分子液晶相分離結晶化動力學
外文關鍵詞: polymer, liquid crystal, phase separation, crystallization kinetics
相關次數: 點閱:311下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為瞭解8CB/PS和EBBA/PCL混摻系統的相變熱力學及動力學,我們分別以理論及實驗的方式建立了它們的相圖,我們以Flory-Huggins理論及Maier-Saupe理論分別來描述液-液混合及nematic相轉變的自由能變化,接著我們也透過POM觀察了8CB/PS相分離、EBBA/PCL中的PCL結晶及各液晶相的形態。在8CB/PS的SALS實驗中發現了兩個散射環分別代表一開始就相分離出來的小滴集團和後面才粗化才形成的較大集團,而這兩著環之間強度的重疊使其分析結果和理論預測不盡相同。以其最後形成的形態EBBA/PCL的morphology map可以分為(A)球晶生長區域;(B)EBBA之nematic相區域;(C)結晶化誘導nematic相區域;(D)nematic相誘導結晶化區域。在球晶生長區域EBBA分子存在於PCL球晶之Interlamellar區域內,在結晶化誘導nematic相區域中則有非線性的PCL結晶化行為。非線性的結晶化行為是因為EBBA/PCL(4/6)之混摻的濃度場改變了其局部過冷卻度,此濃度場在結晶化的初期影響並不顯著,此石的結晶化行為符合二次成核理論並在311K處有regimeIII到regimeII的轉變。


To understand the thermodynamics and kinetics of the phase transition of the system of 4'-octyl-4-cyanobiphenyl/Polystyrene (8CB/PS) blends and N-(4-Ethoxybe- nzylidene)-4’-butylaniline/poly(e-caprolactone) (EBBA/PCL), we have established the equilibrium phase diagrams theoretically and experimentally. Flory-Huggins theory and Maier-Saupe theory have been both taken into account to evaluate the free energy change of the phase transition of isotropic phases and also nematic liquid crystal. Morphology of the phase separation in 8CB/PS, crystal morphology in EBBA/ PCL and two liquid crytal phases were then investigated with polarized optical microscopy. Correlations between both initial small droplet domains and later bigger coarsening domains are found through small angle light scattering in 8CB/PS. Both domains exhibited one-dimensional growth behavior and formed a non-equilibrium structure. Overlap of the two rings made the phase behavior different from the theoretical prediction. The Morphology map for EBBA/PCL is separated into four regions: (A) Spherulite; (B) Nematic droplets; (C) Crystallization induces nematic transition; (D) Nematic transition induces crystallization. In spherulite region EBBA molecules existed in Interlamellar zone of PCL crystallite. Non-linear PCL crystallization occurred in Crystallization induces nematic transition region. Concentration field in EBBA/PCL system leads to the non-linear growth behavior and the change of local degree of undercooling. Concentration filed in crystallization early stage of EBBA/PCL (4/6) is not obvious and thus the growth behavior agrees with secondary nucleation theory, and a transition temperature from regime II to regime III was found at 311K.

Abstract I Thanks II Contents IV Directory of figures and tables VI Meaning of symbols IX Chapter 1 Preface 1 1-1 The phase behavior of blends of polymers 1 1-2 Liquid crystal 2 1-3 Blends of polymer with liquid crystal 4 1-4 Liquid-liquid phase separation 5 1-5 Small angle light scattering on the phase separation investigation 7 1-6 Morphology of blend system of crystalline/ amorphous polymer 8 1-8 Polymer crystallization dynamics 10 1-9 The effect self-generated field has on polymer crystallization 14 1-10 Small angle X-ray scattering analysis on microstructure of materials 15 1-11 Research objective 18 Chapter 2 Phase behavior and morphology of blends of small molecule liquid crystal and polymer 19 2-1 Introduction 19 2-2 Experiment 20 2-2-1 Material 20 2-2-2 Experiment method 21 2-3 Result and discusion 22 2-3-1 Heat analysis of the blend system 22 2-3-2 Establishment of phase diagram of blend system 26 2-3-3 Effect of composition to the morphology of polymer crystallite 41 2-3-4 Small angle X-ray analysis of micro-structure in blend system 44 Chapter 3 Study of phase separation kinetics in polymer/small molecule liquid crystal blend system 47 3-1 Introduction 47 3-2 Experiment 47 3-3 Result and discussion 48 Chapter 4 Study of polymer crystallization kinetics in blend system 54 4-1 Introduction 54 4-2 Experiment 54 4-3 Result and discussion 55 Chapter 5 Summary 65 Reference 67

1.Hoppe, C. E.; Galante, M. J.; Oyanguren, P. A.; Williams, R. J. J. Macromol. Chem. Phys. 2003, 204, 928.
2.Kelly, J. R.; Palffy-Muhoray P. Mol Cryst Liq Cryst. 1994,243,11.
3.Doane, J. W.; Vaz, N. A.; Wu, B. G.; Zumer, S. Appl.Phys. Lett. 1986, 48,269.
4.Vaz, N. A.; Smith, G. W.; Montgomery, G. P. Mol. Cryst. Liq. Cryst. 1987, 146, 1.
5.Lauritzen, Jr. J. I.; Hoffman, J. D. J. Appl. Phys. 1973, 44, 4340.
6.Hoffman, J. D. Polymer. 1983, 24, 3.
7.Hoffman J. D.; Miller, R. L. Polymer. 1997, 38, 3152.
8.Hoffman, J. D.; Davis, G. T.; Lauritzen, Jr. J. I. IN: Hannay NB, editor. Treatise on solide state chemidtry, vol. 3. New York: Plenum Press, 1976. Chapter 7.
9.Kressler, J.; Svoboda, P.; Inoue, T. Polymer. 1993, 34, 3225.
10.Jerold, M. Schultz. Polymer Crystallization. OXFORD, 2001.
11.Tanaka, H.; Nishi, T. Phys. Rev. Lett. 1985, 55, 1102.
12.Tanaka, H.; Nishi, T. Phys. Rev. A. 1989, 39, 783.
13.Okada, T.; Saito, H.; Inoue, T. Macromolecules. 1990, 23, 3865.
14.Keith, H. D.; Jr. Padden, F. J. J. Appl. Phys. 1963, 34, 2409.
15.Keith, H. D.; Jr. Padden, F. J. J. Appl. Phys. 1964, 35, 1270.
16.Keith, H. D.; Jr. Padden, F. J. J. Appl. Phys. 1964, 35, 1286.
17.Strobl G. R.; Schneider M. J. Polym. Sci. Part B: Polym. Phys. 1980, 18, 1343.
18.Debye P. Bueche AM. J. Appl. Phys. 1949, 20, 518.
19.Porod G. Kolloid-Z. Z. Polym. 1961, 124, 83.
20.Ruland WJ. J. Appl. Crystallogy 1971, 4, 70.
21.Dutta, D.; Fruitwala, H.; Kohli, A; Weiss, R. A.; Polym. Eng. Sci. 1990, 30, 1005.
22.Patwardhan, A. A.; Belfiore, L. A. Polym. Eng. Sci. 1988, 28, 916.
23.Huh, W.; Weiss, R. A.; Nicolais, L. Polym. Eng. Sci. 1983, 23, 779.
24.Viney, C.; Yoon, D. Y.; Reck, B.; Ringsdorf, H. Macromolecules. 1989, 22, 4088.
25.Mucha, M. Colloid Polym. Sci. 1991, 269,7.
26.Orendi. H.; Ballauff, M. Liq. Cryst. 1989, 6, 497.
27.Kronberg, B.; Patterson, D. J. Chem. Soc., Faraday Trans. 1976, 72, 1686.
28.Kronberg, B.; Bassignana, I.; Patterson, D. J. Phys. Chem. 1978, 82, 1714.
29.Dubault, A.; Casagrande, C.; Veyssie, M. Mol. Cryst. Liq. Cryst. 1982, 72, 189.
30.Ballauff, M. Mol. Cryst. Liq. Cryst. Lett. 1986, 4, 15.
31.Ballauff, M. Mol. Cryst. Liq. Cryst. Lett. 1986, 136, 175.
32.Orendi, H.; Ballauff, M. Liq. Cryst. 1989, 6, 497.
33.Kellar, V. K.; Manohar C. Mol. Cryst. Liq. Cryst. Lett. 1986, 133, 267.
34.Shen C.; Kyu T. J. Chem. Phys. 1995, 102, 556.
35.Carmen, C. Riccardi; Julio Borrajo; Roberto J. J. Willams. J. Chem. Phys. 1998, 108, 2571.
36.Maier, W.; Saupe, A. Z. Naturforsch. A. 1959, 14, 882.
37.Maier, W.; Saupe, A. Z. Naturforsch. A. 1960, 15, 287.
38.Hoppe, C.; Galante, M. J.; Oyanguren, P. A.; Willams, R. J. J. Macromolecules. 2002, 35, 6324.
39.Lin, Z.; Zhang, H.; Yang, Y. Macromol. Chem. Phys. 1999, 200, 943.
40.Benmouna, F.; Daoudi, A.; Roussel, F.; Buisine, J.; Coqueret, X.; Maschke, U. J. Polym. Sci. Part B: Polym. Phys. 1999, 37, 1841.
41.Kim, N.; Choi, J.; Chien, L. C.; Kyu, T. Macromolecules. 2007, 40, 9582.
42.Nishi, T.; Wang, T. T. Macromolecules. 1975, 8, 909.
43.Talibuddin, S.; Wu, L.; Runt, J.; Lin, J. S. Macromolecules. 1996, 29, 7527.
44.Graca, M.; Wieczorek, S. A.; Holyst R. Macromolecules. 2003, 36, 6903.
45.Hashimoto, T.; Itkaura, M.; Hasegawa, H., J. Chem. Phys. 1986, 85, 6118.
46.Hashimoto, T.; Itkaura, M.; Shimidzu, N., J. Chem. Phys. 1986, 85, 6773.
47.Phillips, P. J.; Rensch, G. J. D.; Taylor, K. D. J. Polym. Sci., Polym. Phys. Edn. 1987, 25, 1725.
48.Thomas, D. G.; Stavely, L. A. K. J. Chem. Soc. 1952, 4569.
49.液晶之基礎與應用 松本正一、角田市郎 合著,劉瑞祥 譯 國立編譯館出版
50.聚合物液晶導論 張其錦 編著 中國科學技術大學出版社
51.向列型液晶與結晶性高分子混摻系統之相行為與結構變化 許景福 編著

QR CODE