簡易檢索 / 詳目顯示

研究生: 王美淇
Mei-Chi Wang
論文名稱: 在3T下大分子與基線於人體腦部頻譜擬合之影響
Influence of Macromolecules and Spline Baseline in the Fitting Model of Human Brain Spectrum at 3T
指導教授: 林益如
Yi-Ru Lin
口試委員: 黃騰毅
蔡尚岳
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 34
中文關鍵詞: 核磁共振頻譜大分子頻譜代謝物定量基線自由度LCModel
外文關鍵詞: metabolite quantification, MRS, macromolecule model, spline baseline, LCModel
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在活體腦部之核磁共振頻譜中,包含了細胞蛋白之大分子頻譜,若沒有適當的參數化大分子頻譜且加入代謝物基底函數會造成代謝物定量之可靠度與再現性降低,過去許多團隊藉由獲得純大分子頻譜或是改變基線自由度,以研究大分子及基線對於代謝物定量之影響。本研究方法為使用較完整之大分子模型以及不同程度之基線自由度,並且提出一個在 3T 磁場下對於健康受試者而言較泛用之參數化 LCModel 模型,以克服大分子頻譜以及磁場不均勻所形成的基底頻譜問題。我們發現使用 LCModel 大分子模型加上適當自由度之基線擁有較高的再現性與穩定度。


    The broad resonances which underlie the whole 1H spectrum are mainly contributed by macromolecules. It makes metabolite quantification 1H-MRS more challenging. Therefore, many previous researches have made a great amount of efforts to deal with baseline distortion problem through obtaining metabolite nulled spectrum and using different degrees of the spline baseline during fit. In this study, we tried to apply a more complete macromolecule model and control the flexibility of the spline baseline in order to provide a relatively robust module for healthy subjects using at 3T. At the end, using LCModel macromolecule model with a moderate spline was the most reproducible and stable.

    Abstract ............................................ i 摘要 ................................................ ii List of Contents ................................... iii List of Figures ..................................... iv List of Tables ....................................... v Chapter1. Introduction ............................... 1 1.1 Magnetic resonance spectroscopy .................. 1 1.2 Metabolite quantification ........................ 3 1.3 Motivation ....................................... 5 Chapter2. Materials and Methods ...................... 7 2.1 In vivo data acquisition ......................... 7 2.2 MRS data quantification setting .................. 8 2.2.1 Metabolite spectrum ............................ 8 2.2.2 Macromolecule models ........................... 9 2.3 Spline baseline ................................. 12 2.4 Evaluation ...................................... 14 2.4.1 Concentration and CRLB ........................ 14 2.4.2 Coefficient of variation ...................... 14 Chapter3. Results ................................... 15 3.1 Intra-subject reproducibility ................... 15 3.2 Inter-subject metabolite quantification ......... 24 Chapter4. Discussion and Conclusion ................. 28 References .......................................... 33

    1. Bhaduri, S., et al., SCSA based MATLAB pre-processing toolbox for 1H MR
    spectroscopic water suppression and denoising. 2020. 18: p. 100294.
    2. Wilson, M., et al., Magnetic resonance spectroscopy metabolite profiles predict survival in paediatric brain tumours. Eur J Cancer, 2013. 49(2): p. 457-
    64.
    3. Govindaraju, V., K. Young, and A.A. Maudsley, Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed, 2000. 13(3): p. 129-
    53.
    4. Verma, A., et al., Magnetic resonance spectroscopy - Revisiting the biochemical and molecular milieu of brain tumors. BBA Clin, 2016. 5: p. 170-8.
    5. Haase, A., et al., 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol, 1985. 30(4): p. 341-4.
    6. Minati, L., et al., Quantitation of normal metabolite concentrations in six brain regions by in-vivoH-MR spectroscopy. J Med Phys, 2010. 35(3): p. 154-63.
    7. Barker, P.B., et al., Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR Biomed, 1993. 6(1): p. 89-94.
    8. De Beer, R., et al., Absolute metabolite quantification by in vivo NMR
    spectroscopy: III. Multicentre 1H MRS of the human brain addressed by one and the same data-analysis protocol. Magn Reson Imaging, 1998. 16(9): p.
    1107-11.
    9. Provencher, S.W., Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed, 2001. 14(4): p. 260-4.
    10. Cudalbu, C., V. Mlynarik, and R. Gruetter, Handling macromolecule signals in the quantification of the neurochemical profile. J Alzheimers Dis, 2012. 31
    Suppl 3: p. S101-15.
    11. Heckova, E., et al., Effects of different macromolecular models on reproducibility of FID-MRSI at 7T. Magn Reson Med, 2020. 83(1): p. 12-21.
    12. Povazan, M., et al., Simultaneous mapping of metabolites and individual macromolecular components via ultra-short acquisition delay (1) H MRSI in the brain at 7T. Magn Reson Med, 2018. 79(3): p. 1231-1240.
    13. Schaller, B., et al., Quantification of the neurochemical profile using simulated macromolecule resonances at 3 T. NMR Biomed, 2013. 26(5): p. 593-599.
    14. Seeger, U., et al., Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med, 2003. 49(1): p.
    19-28.
    15. Marjanska, M. and M. Terpstra, Influence of fitting approaches in LCModel on MRS quantification focusing on age-specific macromolecules and the spline
    baseline. NMR Biomed, 2021. 34(5): p. e4197.
    16. Považan, M., et al., Mapping of brain macromolecules and their use for spectral processing of 1H-MRSI data with an ultra-short acquisition delay at 7 T. 2015. 121: p. 126-135.
    17. Birch, R., et al., Influence of macromolecule baseline on (1) H MR
    spectroscopic imaging reproducibility. Magn Reson Med, 2017. 77(1): p. 34-
    43.
    18. Takanashi, J., et al., Metabolic changes in early childhood using LCModel with corrected water scaling method. J Magn Reson Imaging, 2012. 35(1): p. 174-
    80.
    19. Provencher, S.W., Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med, 1993. 30(6): p. 672-9.
    20. Provencher, S.W.J.L.V., LCModel & LCMgui user’s manual. 2014. 6(3).
    21. Kreis, R., The trouble with quality filtering based on relative Cramer-Rao lower bounds. Magn Reson Med, 2016. 75(1): p. 15-8.
    22. Cudalbu, C., et al. Comparison of two approaches to model the macromolecule spectrum for the quantification of short TE 1 H MRS spectra.
    in 2008 IEEE International Workshop on Imaging Systems and Techniques.
    2008. IEEE.
    23. Deelchand, D.K., K. Kantarci, and G. Oz, Improved localization, spectral quality, and repeatability with advanced MRS methodology in the clinical setting.
    Magn Reson Med, 2018. 79(3): p. 1241-1250.
    24. Giapitzakis, I.A., N. Avdievich, and A. Henning, Characterization of macromolecular baseline of human brain using metabolite cycled semi-LASER
    at 9.4T. Magn Reson Med, 2018. 80(2): p. 462-473.
    25. Giapitzakis, I.A., et al., Investigation of the influence of macromolecules and spline baseline in the fitting model of human brain spectra at 9.4T. Magn Reson Med, 2019. 81(2): p. 746-758.
    26. Nezhad, F.S., et al., Quantification of GABA, glutamate and glutamine in a single measurement at 3T using GABA-edited MEGA-PRESS. Nmr in Biomedicine, 2018. 31(1).

    無法下載圖示 全文公開日期 2025/01/17 (校內網路)
    全文公開日期 2025/01/17 (校外網路)
    全文公開日期 2025/01/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE