簡易檢索 / 詳目顯示

研究生: 黃莉婷
Li-Ting Huang
論文名稱: 生質酒精生產程序模式建立與最適化
Modeling and Optimization of Bioethanol Production Processes
指導教授: 周宜雄
Yi-Shyong Chou
口試委員: 李豪業
Hao-Yeh Lee
王逢盛
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 生質酒精發酵程序模式最適化
外文關鍵詞: bio-ethanol, fermentation, model, optimization
相關次數: 點閱:278下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生質酒精為目前一廣泛使用於交通運輸上的生質燃料,由生物質所生產的生質酒精其不僅可以減少原油的使用,並可降低對環境所產生的汙染。由木質纖維素做為生產生質酒精的原料,考慮其可用性與來源的低成本,為一具有發展潛力的方法。在發酵程序中,本研究使用了Kluyveromyces marxianus UFV-3做為發酵程序的酵母菌,建立一精簡的數學模式來模擬生產生質酒精的過程,並考慮不同基質狀態時,對酵母菌之影響,使用基因演算法尋找數學模式中的參數,由此結果進行最適化之操作。最適化操作於流動式反應器,使用基因演算法尋找最大產率、產量。


    Bioethanol is the most widely used biofuel for transportation. It's an approach to reduce consumption of crude oil and environmental pollution. Lignocellulosic biomass is the most promising feedstock considering its great availability and low cost. In the process of fermentation, we use the yeast Kluyveromyces marxianus UFV-3 to produce bioethanol and the fermentation of glucose and xylose simultaneously. We establish a streamlined mathematical model to simulate bioethanol production and consider the effect of the different medium status. Parameters of model were obtained by using Genetic Algorithms. The optimization of the procedure is working in the flow reactor system and using Genetic Algorithms to find the highest productivity and the amount of bioethanol.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第1章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 組織章程 3 第2章 文獻回顧 5 2.1 木質纖維素 5 2.2 纖維酒精生產程序 7 2.2.1 前處理 8 2.2.2 水解 8 2.2.3 發酵 9 2.2.4 蒸餾 11 2.3 酵母菌發酵程序動力學 11 2.3.1 菌體動力式 12 2.3.2 多基質發酵程序動力式 13 第3章 模式建立與參數估計 17 3.1 前言 17 3.2 基因演算法簡介 18 3.3 批式反應器簡介 20 3.4 批式發酵程序之實驗簡述 20 3.5 批式發酵程序之動力學模式 22 3.6 參數估計 26 3.7 模擬結果與討論 29 第4章 最適化進料策略 34 4.1 前言 34 4.2 流動式反應器發酵之動力學模式 35 4.2.1 Process A 單股進料 35 4.2.2 Process B 雙股進料 37 4.3 最適化進料策略設計 39 4.3.1 目標函數 39 4.3.2 決策變數 40 4.3.3 限制條件 41 4.4 最適化進料策略結果 42 4.4.1 Process A 單股進料 42 4.4.2 Process B 雙股進料 61 4.5 結果與討論 80 第5章 結論 82 參考文獻 84

    [1] Aiello, C., A. Ferrer and A. Ledesma (1996). "Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414." Bioresource Technol 57(1): 13-18.
    [2] Balat, M. (2009). "Gasification of Biomass to Produce Gaseous Products." Energ Source Part A 31(6): 516-526.
    [3] Balat, M., H. Balat and C. Oz (2008). "Progress in bioethanol processing." Prog Energ Combust 34(5): 551-573.
    [4] Cheng, S. M. and S. D. Zhu (2009). "Lignocellulosic Feedstock Biorefinery-the Future of the Chemical and Energy Industry." Bioresources 4(2): 456-457.
    [5] Chu, D. Q., J. Zhang and J. Bao (2012). "Simultaneous Saccharification and Ethanol Fermentation of Corn Stover at High Temperature and High Solids Loading by a Thermotolerant Strain Saccharomyces cerevisiae DQ1." Bioenerg Res 5(4): 1020-1026.
    [6] Dien, B. S., M. A. Cotta and T. W. Jeffries (2003). "Bacteria engineered for fuel ethanol production: current status." Appl Microbiol Biot 63(3): 258-266.
    [7] dos Santos, V. C., C. R. S. Braganca, F. J. V. Passos and F. M. L. Passos (2012). "Kinetics of growth and ethanol formation from a mix of glucose/xylose substrate by Kluyveromyces marxianus UFV-3." Anton Leeuw Int J G 103(1): 153-161.
    [8] Fonseca, G. G., E. Heinzle, C. Wittmann and A. K. Gombert (2008). "The yeast Kluyveromyces marxianus and its biotechnological potential." Appl Microbiol Biot 79(3): 339-354.
    [9] Galbe, M. and G. Zacchi (2002). "A review of the production of ethanol from softwood." Appl Microbiol Biot 59(6): 618-628.
    [10] Hahn-Hagerdal, B., M. Galbe, M. F. Gorwa-Grauslund, G. Liden and G. Zacchi (2006). "Bio-ethanol - the fuel of tomorrow from the residues of today." Trends Biotechnol 24(12): 549-556.
    [11] Hamelinck, C. N., G. van Hooijdonk and A. P. C. Faaij (2005). "Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term." Biomass Bioenerg 28(4): 384-410.
    [12] Hasunuma, T. and A. Rondo (2012). "Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering." Biotechnol Adv 30(6): 1207-1218.
    [13] Hongzhang Chena, G. L. (2013). "An industrial level system with nonisothermal simultaneous solid state saccharification, fermentation and separation for ethanol production." Biochem Eng J 74: 121–126.
    [14] Horn, S. J. and V. G. H. Eijsink (2010). "Enzymatic Hydrolysis of Steam-Exploded Hardwood Using Short Processing Times." Biosci Biotech Bioch 74(6): 1157-1163.
    [15] Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert and A. Darzins (2008). "Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances." Plant J 54(4): 621-639.
    [16] Kang, H. W., Y. Kim, S. W. Kim and G. W. Choi (2012). "Cellulosic ethanol production on temperature-shift simultaneous saccharification and fermentation using the thermostable yeast Kluyveromyces marxianus CHY1612." Bioproc Biosyst Eng 35(1-2): 115-122.
    [17] Katahira, S., A. Mizuike, H. Fukuda and A. Kondo (2006). "Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain." Appl Microbiol Biot 72(6): 1136-1143.
    [18] Krishnan, M. S., N. W. Y. Ho and G. T. Tsao (1999). "Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33)." Appl Biochem Biotech 77-9: 373-388.
    [19] Kwon, Y. J. and C. R. Engler (2005). "Kinetic models for growth and product formation on multiple substrates." Biotechnol Bioproc E 10(6): 587-592.
    [20] Laursen, W. (2006). "Students take a green initiative." Tce-the Chem Eng(774-5): 32-34.
    [21] Leksawasdi, N., E. L. Joachimsthal and P. L. Rogers (2001). "Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis." Biotechnol Lett 23(13): 1087-1093.
    [22] M. Arellano-Plaza, E. J. H.-L., D. M. Diaz-Montano, A. Moran, and J. J. Ramirez-Cordova (2007). "Unstructured Kinetic Model for Tequila Batch Fermentation." INTERNATIONAL JOURNAL of MATHEMATICS AND COMPUTERS IN SIMULATION 1(1).
    [23] Martinez, A. T., M. Speranza, F. J. Ruiz-Duenas, P. Ferreira, S. Camarero, F. Guillen, M. J. Martinez, A. Gutierrez and J. C. del Rio (2005). "Biodegradation of lignocellulosics: microbial chemical, and enzymatic aspects of the fungal attack of lignin." Int Microbiol 8(3): 195-204.
    [24] Monod, J. (1942). "Research of the Growth of Bacterial Cultures, Hermann,Paris, France."
    [25] Najafpour, G. D. (2007). Biochemical engineering and biotechnology. Amsterdam ; Boston, MA, Elsevier B. V.
    [26] Nandasana, A. D. and S. Kumar (2008). "Kinetic modeling of lactic acid production from molasses using Enterococcus faecalis RKY1." Biochem Eng J 38(3): 277-284.
    [27] Olofsson, K., B. Palmqvist and G. Liden (2010). "Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding." Biotechnol Biofuels 3.
    [28] Pimentel, D. (2003). "Ethanol fuels: energy balance, economics, and environmental impacts are negative." Natural Resources Research 12: 127-134.
    [29] Saha, B. C. (2003). "Hemicellulose bioconversion." J Ind Microbiol Biot 30(5): 279-291.
    [30] Shen, J. C. and F. A. Agblevor (2011). "Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge." Bioproc Biosyst Eng 34(1): 33-43.
    [31] Shen Tian, J. Z., Yaping Pan, Jikai Liu, Zhenhong Yuan, Yongjie Yan, Xiushan Yang ( 2008). "Construction of a recombinant yeast strain converting xylose and glucose to ethanol." Frontiers of Biology in China 3(2): 165-169.
    [32] Shi, N. Q. and T. W. Jeffries (1998). "Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae." Appl Microbiol Biot 50(3): 339-345.
    [33] Sun, Y. and J. Y. Cheng (2002). "Hydrolysis of lignocellulosic materials for ethanol production: a review." Bioresource Technol 83(1): 1-11.
    [34] Taherzadeh, M. J. and K. Karimi (2008). "Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review." Int J Mol Sci 9(9): 1621-1651.
    [35] Thanapimmetha, A., K. Vuttibunchon, B. Titapiwatanakun and P. Srinophakun (2012). "Optimization of Solid State Fermentation for Reducing Sugar Production from Agricultural Residues of Sweet Sorghum by Trichoderma harzianum." Chiang Mai J Sci 39(2): 270-280.
    [36] Wang, L. J., M. A. Hanna, C. L. Weller and D. D. Jones (2009). "Technical and economical analyses of combined heat and power generation from distillers grains and corn stover in ethanol plants." Energ Convers Manage 50(7): 1704-1713.
    [37] Yao, R. S., B. K. Qi, S. S. Deng, N. Liu, S. C. Peng and Q. F. Cui (2007). "Use of Surfactants in Enzymatic Hydrolysis of Rice Straw and Lactic Acid Production from Rice Straw by Simultaneous Saccharification and Fermentation." Bioresources 2(3): 389-398.
    [38] Zaldivar, J., J. Nielsen and L. Olsson (2001). "Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration." Appl Microbiol Biot 56(1-2): 17-34.

    QR CODE