簡易檢索 / 詳目顯示

研究生: 鍾志昇
Che-Sheng Chung
論文名稱: 適用於金氧半場效電晶體電氣模型之低溫低電場先進量子工程理論研究
Low-Field Low-Temperature One-Particle Self-Consistent Engineering Study in the Compact Models of MOSFET Devices
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang
莊敏宏
Miin-Horng Juang
黃恆盛
Heng-Sheng Huang
鄭明哲
Jeng, Ming-Jer
鄧恒發
Heng-Fa Teng
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 105
中文關鍵詞: 金氧半場效電晶體低溫先進量子單電子自我一致計算法半分析計算漢密爾頓週期演算法湯瑪斯-費米趨近理論
外文關鍵詞: one particle, low field, self-consistency, semi-analysis, Hamiltonian-cycle algorithm, Thomas-Fermi approximation
相關次數: 點閱:145下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

思考到因半導體工業界在未來數十年的發展中,所可能帶來對電子設計工業界,即將到來之衝擊。因此考量在現有工業半導體的成熟製造技術能力下,此篇研究探索低溫低電場元件模型之新的工程量子理論,以便在未來能夠拓展出,可能存在新的電子設計領域。
在尚未進一步對金氧半場效電晶體做各種可能之低溫低電場量測之前。根據半古典理論發展之結果,推薦採用單電子自我一致計算法和運用半分析趨近理論,開展出新的量子工程模型和理論。如此以便能夠在未來,可為電子設計工業界開啟新的設計理論,新的技術,新的方法和新的應用,因而能夠創造出許多新的集成積體電路產品,而有助於開拓高科技市場。
本篇論文有以下數項的發展、發現、創新和創見,包括:(一)根據已經量測知道的低溫高電場漏電電流的現象,推薦使用新的量子工程模型和理論,於金氧半場效電晶體通道(或基板)中,在數值軟體計算低溫低電場漏電電流下,可達成類似地預期中類亂數電流現象的效果。(二)根據已經發現的但尚未解開之難題,設定新的量子工程趨近理論,計算得到部分問題徵兆的近似特性。(三)為達成電子設計工業界的要求,此篇研究提供可接受之快速和穩定的解決方案,並且符合以上的電氣特性模型結果。(四)在使用單電子自我一致計算法的情況下,採用半分析計算近似方式和修改過之湯瑪斯-費米趨近理論,發展出一套實體空間下新的趨近理論。(五)為了了解單電子自我一致計算法的機制,發展出數項新的技術。
根據過去數年來做此一研究課題的經驗發現,此一新的量子工程趨近理論,可能可以用於解釋已經量測到的,但是尚無法用已知的成熟理論解釋之特性。為未來推展出,可能填補部分在目前已經較成熟的古典理論和半古典理論之間之空白理論區域。


According to the trend of future semiconductor manufacturing, several impacts possibly will appear on the electronic design industry next several decades. Using the mature semiconductor technologies, this study, under low-field low-temperature or very-low-temperature conditions, explores the one-particle self-consistent calculation modeling devices to expand possibly new territory of electronic design in the future.
According to semi-classical approximations, before taking up any electrical measurements under low field low temperature or very-low-temperature conditions, we proposed a new engineering approximation. The new engineering approximation supports the one-particle self-consistent calculation, which is interpreted by semi-analytical approach, characterizing several low-field quantum features of conventional MOSFET devices. By taking the advantages of the mature semiconductor manufacturing capabilities, in the future, new quantum models used by the electronic design industry will offer new design theories, new techniques, new methodologies, and new electronic applications, which will bring in new integrated circuit products. These products will help expansion of high-tech markets.
The following items list the developments, discoveries, innovations, and inventions of this independent study: (1) According to the measured high-field leakage currents, we proposed the new engineering approximation theoretically predicting leakage current behaviors before measuring any low-field very-low-temperature currents over channels (or substrates) of MOSFET devices. The r-space one-particle self-consistent calculation using the proposed engineering approxima- tion does successfully perform similarly expected pseudo-random current phenomena under low-field very-low- temperature conditions. (2) Based on the discovered problems unsolved by the validated theories, we defined the new engineering approximation. The calculations based on the new approximation exhibited several similar quantum phenomena possibly leading to ways conquering the unsolved problems. (3) To satisfy the requirements of electronic design industry, the new electrical model performing the low-field very-low-temperature currents offers fast and stable solutions. (4) By using the semi-analytical approach and the modified Thomas-Fermi approximation, the r-space one-particle self-consistent calculation was led by the new engineering approximation. (5) To understand the mechanisms of the one-particle self-consistent calculation, we proposed several new techniques and skills.
During last several years, we experienced the new engineering approximation, which might interpret measured current phenomena even though the validated theories did not interpret them well. The proposed engineering approximation might also fill a part of theoretical gap between semi-classical approximations and classical theories in the future.

Abstract Acknowledgement (In Chinese) 1 Introduction 2 Hamiltonian-Cycle Algorithms 2.1 Introduction 2.2 From Concepts to the Algorithms 2.2.1 Initiation 2.2.2 Optimization of the Redrawn Algorithm 2.3 Near-Optimal Algorithm 2.3.1 Transformation 2.3.2 Scaling Techniques 2.4 Verification 2.4.1 Calculated Potential Energies 2.4.2 Extracted Widths 2.5 Conclusions 3 Modified Thomas-Fermi Approximation 3.1 Motivation 3.2 Band Properties 3.2.1 R-Space Band Structure 3.2.2 Theoretical Density of States 3.2.3 Derivatives of the Edge Energies 3.3 Statistics Properties 3.3.1 Fermi-Dirac Statistics 3.3.2 Grand Canonical Partition 3.4 Quantum Properties 3.4.1 R-Space Quantum Wave Function 3.4.2 Quantum Calculation 3.4.3 R-Space Eigen-Energies 3.4.4 Expectation Value of Potential Energy 3.5 Conclusions 4 One-Particle Self-Consistent Calculation 4.1 Introduction 4.2 Minimum Set 4.2.1 Triangular Quantum Waves 4.2.2 R-Space Eigen-Energies 4.3 Semi-Analytical Approach 4.3.1 Analytical Part 4.3.1.1 Self-Consistent Charge Sheet Densities 4.3.1.2 Self-Consistent Electric Field 4.3.1.3 Derivative of Airy Wave Function 4.3.2 Numerical Calculation 4.3.2.1 Self-Adjusted Fermi Level 4.3.2.2 Newton’s Divided-Difference Formula 4.3.2.3 Scaled Potential Energies 4.3.2.4 Scaled Charge Sheet Densities 4.3.3 Reduction of Extracted Widths 4.3.3.1 Estimates 4.3.3.2 Code Optimization 4.4 Calculated Features 4.4.1 Extracted Widths 4.4.2 Stable Widths Extracted 4.4.3 Partial Freeze-out Effect 4.5 Discussions 4.6 Conclusions 5 Self-Consistent Noise Currents 5.1 Introduction 5.2 Modified Diffusion Model 5.3 Discussions 5.4 Conclusions 6 Conclusions Bibliography Publication list

[1] F. Stern, “Self-consistent results for n-type Si inversion layers,” APS Phys. Rev. B, Vol. 5, no. 12, pp. 4891-4899, June 1972.
[2] F. Stern and W. E. Howard, “Properties of semiconductor surface inversion layers in the electric quantum limit,” APS Phys. Rev., Vol. 163, No. 3, pp. 816–835, November 1967.
[3] J. –P. Colinge, A. J. Quinn, L. Floyd, G. Redmond, J. C. Alderman, W. Xiong, C. R. Cleavelin, T. Schulz, K. Schruefer, G. Knoblinger, and P. Patruno, “Low-temperature electron mobility in Trigate SOI MOSFETs,”. IEEE Electron. Device Lett.; Vol. 27, No. 2, pp. 120-122, 2006.
[4] F. Boeuf, T. Skotnicki, S. Monfray, C. Julien, D. Dutartre, J. Martins, P. Mazoyer, R. Palla, B. Tavel, P. Ribot, E. Sondergard, and M. Sanquer, “16 nm planar nMOSFET manufacturable within state-of-the-art CMOS process thanks to specific design and optimization,” IEDM Tech. Dig., Washington DC, USA, pp. 637–640, 2001.
[5] E. Gnani, S. Reggiani, M. Rudan, and G. Baccarani, “A new approach to the self-consistent solution of the Schrödinger-Poisson equations in nanowire MOSFETs,” IEEE Proc 34th ESSDERC, Leuven, Belgium, pp. 177-180, September 2004.
[6] S. Selberherr, “MOS device modeling at 77 K,” IEEE Trans. Electron. Dev., Vol. 36, No. 8, pp. 1464-1474, 1989.
[7] S. V. Walstra and C. -T. Sah, “Thin oxide thickness extrapolation from capacitance-voltage measurements,” IEEE Trans. Electron. Dev., Vol. 44, No. 7, pp. 1136–1142, 1997.
[8] F. Rana, S. Tiwari, and D. A. Buchanan, “Self-consistent modeling of accumulation layers and tunneling currents through very thin oxides,” AIP Appl. Phys. Lett., Vol. 69, No. 8, pp. 1104-1106, 1996.
[9] S. A. Hareland, S. Krishnamurthy, S. Jallepalli, C. –F. Yeap, K. Hasnat, A. F. Tasch, and C. M. Maziar, “A computationally efficient model for inversion layer quantization effects in deep submicron n-channel MOSFET’s,” IEEE Trans. Electron. Dev., Vol. 43, No. 1, pp. 90-96, 1996.
[10] F. Assad, Z. Ren, D. Vasileska, S. Datta, and M. S. Lundstrom, “On the performance limits for Si MOSFETs: a theoretical study,” IEEE Trans. Electron. Dev., Vol. 47, No. 1, pp. 232–240, 2000.
[11] Y. Ohkura, “Quantum Effects in Si n-MOS Inversion Layer at High Substrate Concentration,” Solid-State Electron., Vol. 33, No. 12, pp. 1581-1585, 1990.
[12] C. –J. Sheu and S. –L. Jang, “Modeling of electron gate current and post-stress drain current of p-type silicon-on-insulator MOSFETs,” Solid-State Electron., Vol. 47, pp. 705-711, 2003.
[13] W. Hänsch, Th. Vogelsang, R. Kircher, and M. Orlowski, “Carrier transport near the Si/SiO2 interface of a MOSFET,” Solid-State Electron., Vol. 32, no. 10, pp. 839-849, 1989.
[14] Y. Li, T. –W. Tang, and X. Wang, “Modeling of Quantum Effects for Ultrathin Oxide MOS Structures with an Effective Potential,” IEEE Trans. Nanotechnol., Vol. 1, No. 4, pp. 238-242, Dec. 2002.
[15] J. He, X. Xi, M. Chan, C. –H. Lin, A. Niknejad, and C. Hu, “A Non-Charge-Sheet Based Analytical Model of Undoped Symmetric Double-Gate MOSFETs Using SPP Approach,” IEEE Proc. 5th ISQED Conf., San Jose, CA, USA, pp. 45-50, 2004.
[16] J. C. Slater, “Note on Hartree’s method,” APS Phys. Rev., Vol. 35, No. 2, pp. 210-211, 1930.
[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to Algorithms,” MIT Press, Cambridge, Massachusetts, 1990.
[18] T. Skotnicki, F. Boeuf, M. Muller, C. Fenouillet-Beranger, R. Cerutti, S. Harrison, B. Dumont, A. Pouydebasque, S. Monfray, F. Payet, E. Fuchs, L. Gayet, and K. Herve, “MASTAR 5,” Inter. Tech. Roadmap for Semi., 2007. (a demo program)
[19] S. E. Laux, “Numerical Methods for Calculating Self-Consistent Solutions of Electron States in Narrow Channels,” IEEE Proceedings Numerical Analysis of Semiconductor Devices and Integrated Circuits (NASCODE V), pp. 270-275, 1987.
[20] F. Stern, “Iteration methods for calculating self-consistent fields in semiconductor inversion layers,” J. Comput. Phys., Vol. 6, No. 1, pp. 56-67, 1970.
[21] R. B. Platte, L. N. Trefethen, and A. B. J. Kuijlaars, “Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples,” SIAM Review, Vol. 53, No. 2, pp. 308-318, June 2011.
[22] E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids, Vol. 1, No. 4, pp. 249-261, 1957.
[23] T. Kerkhoven, A. T. Galick, U. Ravaioli, J. H. Arends, and Y. Saad, “Efficient numerical simulation of electron states in quantum wires,” AIP J. Appl. Phys., Vol. 68, No. 7, pp. 3461–3469, 1990.
[24] C. Bowen, C. L. Fernando, G. Klimeck, A. Chatterjee, D. Blanks, R. Lake, J. Hu, J. Davis, M. Kulkarni, S. Hattangady, and I. -C. Chen, “Physical Oxide Thickness Extraction and Verification using Quantum Mechanical Simulation,” IEEE IEDM Tech. Dig,, Washington DC, USA, pp. 869-72, 1997.
[25] J. –W. Yang, J. G. Fossum, G. O. Workman, and C. -L. Huang, “A physical model for gate-to-body tunneling current and its effects on floating-body PD/SOI CMOS devices and circuits,” Solid-State Electron., Vol. 48, No. 2, pp. 259–270, 2004.
[26] J. S. Blakemore, “Approximations for Fermi-Dirac integrals, especially the function F 1/2(η) used to describe electron density in a semiconductor,” Solid-State Electron., Vol. 25, No. 11, pp. 1067-1076, 1982.
[27] Kerson Huang, “Statistical Mechanics,” 2nd edition, John Wiley & Sons, New York, 1987.
[28] A. P. Gnädinger and H. E. Talley, “Quantum mechanical calculation of the carrier distribution and the thickness of the inversion layer of a MOS field-effect transistor,” Solid-State Electron., Vol. 13, No. 9, pp. 1301-1309, 1970.
[29] C. Moglestue, “Self-consistent calculation of electron and hole inversion charges at silicon-silicon dioxide interfaces,” AIP J. Appl. Phys., Vol. 59, No. 9, pp. 3175-3183, 1986.
[30] T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” APS Rev. Mod. Phys., Vol. 54, No. 2, pp. 437-672, 1982.
[31] A. Abramo, A. Cardin, L. Selmi, and E. Sangiorgi, “Two-dimensional quantum mechanical simulation of charge distribution in silicon MOSFETs,” IEEE Trans. Electron. Dev., Vol. 47, No. 10, pp. 1858-1863, 2000.
[32] B. L. Buzbee, G. H. Golub, and C. W. Nielson, “On direct methods for solving Poisson’s equations,” SIAM J. Numer. Anal., Vol. 7, No. 4, pp. 627-656, 1970.
[33] R. Seiwatz and M. Green, “Space charge calculations for semiconductors,” AIP J. Appl. Phys., Vol. 29, No. 7, pp. 1034-1040, 1958.
[34] B. Granoff and N. Bleistein, “Asymptotic solutions of a 6th order differential equation with two turning points. Part I: derivation by method of steepest descent,” SIAM J. Math. Anal., Vol. 3, No. 1, pp. 45-57, 1972.
[35] Á Elbert and A. Laforgia, “On some properties of the Gamma function,” AMS Proc. of the American Math. Soc., Vol. 128, No. 9, pp. 2667-2673, 2000.
[36] D. S. Jones, “Asymptotic behavior of integrals,” SIAM Rev., Vol. 14, No. 2, pp. 286-317, 1972.
[37] M. Abramowitz and I. A. Stegun, “Handbook of mathematical functions,” Washington DC, US GPO; 1964.
[38] B. R. Fabijonas and F. W. J. Olver, “On the reversion of an asymptotic expansion and the zeros of the Airy functions,” SIAM Rev., Vol. 41, No. 4, pp. 762-73, 1999.
[39] M. V. Fischetti and S. E. Laux, “Long-range coulomb interactions in small Si devices. Part I: performance and reliability,” AIP J. Appl. Phys., Vol. 89, No. 2, pp. 1205-1231, 2001.
[40] O. Penzin, G. Paasch, F. O. Heinz, and L. Smith, “Extended quantum correction model applied to six-band k∙p valence bands near silicon/oxide interfaces,” IEEE Trans. Electron. Dev., Vol. 58, No. 6, pp. 1614-1619, 2011.
[41] T. Janik and B. Majkusiak, “Analysis of the MOS transistor based on the self-consistent solution to the Schrödinger and Poisson equations and on the local mobility model,” IEEE Trans. Electron. Dev., Vol. 45, pp. 1263–1271, June 1998.
[42] R. H. Kingston and S. F. Neustadter,, “Calculation of the space charge, electric field, and free carrier concentration at the surface of a semiconductor,” AIP J. Appl. Phys., Vol. 26, No. 6, pp. 718-720, 1955.
[43] A. Trellakis, A. T. Galick, A. Pacelli and U. Ravaioli, “Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures,” AIP J. Appl. Phys., Vol. 81, No. 12, pp. 7880-7884, 1997.
[44] H. Kroemer, “The Einstein relation for degenerate carrier concentrations,” IEEE Trans. Electron. Dev., Vol. 25, No. 7, pp. 850, 1978.
[45] R. E. Bank, W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. J. Rose, and R. Smith, "Transient Simulation of Silicon Devices and Circuits," IEEE Trans. CAD, Vol. CAD-4, No. 4, pp. 436-451, October 1985.
[46] P. J. Davis and P. Rabinowitz, “Methods of Numerical Integration,” 2nd Edition, Dover Pub., 2007.
[47] J. Suñé, P. Olivo, and B. Riccó, “Quantum-mechanical modeling of accumulation layers in MOS structure,” IEEE Trans. Electron Devices, Vol. 39, pp. 1732–1739, July 1992.
[48] M. V. Fischetti, and S. E. Laux, “Monte Carlo Study of Electron Transport in Silicon Inversion Layers,” IEEE IEDM, 29.2.1, pp. 721, 1992.
[49] S. Takagi, T. Iisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M Takenaka, and N. Sugiyama, “Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance,” IEEE Trans. Electron Devices, Vol. 55, No. 1, p.21-39, January 2008.
[50] H. M. Nayfeh, C. W. Leitz, A. J. Pitera, E. A. Fitzgerald, J. L. Hoyt, and D. A. Antoniadis, “Influence of High Channel Doping on the Inversion Layer Electron Mobility in Strained Silicon n-MOSFETs,” IEEE Electron Device Lett., Vol. 24, No. 4, pp. 248-250, April 2003.
[51] D. Vasileska, S. S. Ahmed, and G. Klimeck: https://nanohub.org/resources/4443.
[52] F. Boeuf, X. Jehl, M. Sanquer, and T. Skotnicki, “Controlled Single Electron Effects in Nonoverlapped Ultra-Short Silicon Field Effect Transistors,” IEEE Trans. on Nanotechnology, Vol. 2, No. 3, pp. 144-148, September 2003.
[53] R. Lake, G. Klimeck, R. C. Bowen, and D. Javanovic, “Single and multiband modeling of quantum electron transport through layered semiconductor devices,” AIP J Appl. Phys., Vol. 81, No. 12, pp. 7845-7869, 1997.
[54] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFETs: Part I—Effects of substrate impurity concentration,” IEEE Trans. Electron Devices, Vol. 41, No. 12, pp. 2357–2362, December 1994.

QR CODE