簡易檢索 / 詳目顯示

研究生: 陳昭甫
Chao-Fu Chen
論文名稱: 具能量管理之電容去離子淨水系統
A Water Purification System for Capacitive Deionization with Energy Management
指導教授: 林長華
Chang-Hua Lin
口試委員: 楊宗銘
Chung-Ming Young
王見銘
Chien-Ming Wang
陳慕平
Mu-Ping Chen
王永宜
Yung-Yi Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 119
中文關鍵詞: 電容去離子裝置能量管理電能回收電能回充
外文關鍵詞: capacitor deionization device, energy management, energy recovery, energy recharge
相關次數: 點閱:323下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研製具能量管理之電容去離子裝置淨水系統。所提之能量回收與回充功能,除了可將電容去離子裝置利用電吸附所儲存之電荷,透過雙向能量管理系統,將能量傳遞至超級電容之中,並可將超級電容中之電荷,再回充至電容去離子裝置。首先,本系統所提之數位控制器根據電容去離子裝置能量傳遞之需求,使用雙向升降壓轉換器特性配合磁滯控制,順利地在電容去離子裝置與超級電容之間達到雙向能量傳遞。其次,結合漸進式責任週期與雙頻控制技術,克服電容去離子裝置因等效串聯電阻過大而影響能量傳遞的現象,且解決離子吸附反應速度不均使回收時間較慢等問題。再者,所加入之雙向控制,可將回收之能量再回充至電容去離子裝置,以達到能量循環及降低能耗之目的。最後,建構一人機介面可觀測能量雙向傳遞之波形與效率等統計數據,及系統之動態變化。


    This thesis develops a water purification system for capacitive deionization devices CDI with energy management. The proposed energy recovery and recharge functions not only can transfer the charge stored in the CDI by electrosorption to the supercapacitor through the proposed bidirectional energy management, but also recharge the charge stored in the supercapacitor to the CDI. First, the proposed digital controller smoothly achieves bidirectional energy transfer, by using a buck-boost converter with hysteresis control, according to the requirements of the energy transfer of the CDI. Moreover, combing the progressive duty cycle and dual-frequency control technigue renders the proposed system being able to improve the decreased transfer efficiency affected by the high equivalent resistance of the CDI, and to overcome the increased recovery time resulted from the uneven speed of the ion absorption Furthermore, the bidirectional control is used to recharge the recycled energy to the capacitive deionization device to achieve energy circulation and reduce energy consumption. Finally, a human-machine interface is constructed to observe statistical datas, such as the waveform, efficiency of energy bidirectional transmission, and dynamic changes of the system.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 論文架構 3 第二章 具能量回收與回充之電容去離子技術 4 2.1 電容去離子技術簡介 4 2.1.1 電容去離子原理 5 2.1.2 電容去離子裝置之負載特性分析 7 2.1.3 電容去離子裝置之應用 9 2.2 電容去離子裝置之能量回收與回充電路分析與設計 11 2.2.1 能量回收及回充系統之簡介 14 2.2.2 四開關式升降壓轉換器架構介紹 16 2.2.3 四開關式升降壓轉換器工作模式與數學分析 18 2.3 電流磁滯控制技術 32 2.4 漸進式責任週期控制與雙頻控制技術 35 2.5 雙向控制技術 41 第三章 數位化控制與人機介面設計 42 3.1 微控制器之介紹 42 3.2 微控制晶片dsPIC33FJ64GS606 43 3.3 微控制晶片與系統元件之關係與應用 47 3.4 人機介面設計與應用 48 3.5 隔離驅動IC電路設計 49 3.6 轉換器系統輔助電源IC相關說明 50 3.7 電容去離子裝置之輔助電源IC相關說明 52 第四章 系統規格及設計準則 57 4.1 雙向四開關式升降壓轉換器之規格 57 4.2 電容去離子裝置計算與超級電容參數設計 58 4.3 儲能電感之設計 63 4.4 電流回授控制之設計與實現 65 4.5 電壓回授控制之設計與實現 69 4.6 系統控制程式應用與設計 72 4.7 高速PWM模組介紹與驅動電路設計 75 4.8 類比數位信號轉換器(ADC) 79 第五章 電路模擬與實測結果 81 5.1 實驗系統規格 81 5.2 模擬與實測波形 83 5.3 系統控制法之實測結果 91 5.4 電能回收效率與回充效率 97 第六章 結論與未來展望 100 6.1 結論 100 6.2 未來展望 101 參考文獻 102

    [1]T. J. Welgemoed and C. F. Schutte, “Capacitive deionization technology: An alternative desalination solution,” Desalination, vol. 183, no. 1–3, pp. 327–340, Nov. 2005.
    [2]Y. Oren, “Capacitive deionization (CDI) for desalination and water treatment—Past, present and future (a review),” Desalination, vol. 228, no. 1–3, pp. 10–29, Aug. 2008.
    [3]Y. Oren, “Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review),” Desalination, vol. 228, no. 1–3, pp. 10–29, Aug. 1. 2008.
    [4]S. Hwang and S. Hyun, “Capacitance control of carbon aerogel electrodes,” J. Non-Cryst. Solids, vol. 347, pp. 238–245, 2004.
    [5]P.Xu, J. E. Drewes, D. Heil, and G. Wang, “Treatment of brakish produced water using carbon aerogel-based capacitive deionization technology,” Water Res, vol. 42, no. 10–11, pp. 2605–2617, May 2008.
    [6]M. Alkuran, M. Orabi, and N. Scheinberg, "Highly efficient Capacitive De-Ionization (CDI) water purification system using a buck-boost converter." pp. 1926-1930.
    [7]A. M. Pernia,M. J. Prieto; F. Nuno, F. J. Alvarez-Gonzalez, J. A. Martinez, “Improving energy recovery in CDI systems, ” Industry Applications Society Annual Meeting, 2013 IEEE , pp.1-8, 6-11 Oct. 2013.
    [8]M. Alkuran and M. Orabi, “Utilization of a buck–boost converter and the method of segmented capacitors in a CDI water purification system,” in Proc. 12th Int. Middle-East Power Syst. Conf., 2008, pp. 470–474.
    [9]V. Samavatian, A. Radan, “A High Efficiency Input/Output Magnetically Coupled Interleaved Buck–Boost Converter With Low Internal Oscillation for Fuel-Cell Applications: CCM Steady-State Analysis,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5560-5568, Sep. 2015.
    [10]F. Caricchi, F. Crescimbini, F. Giulii Capponi, L. Solero, “Study of bidirectional buck-boost converter topologies for application in electrical vehicle motor drives, ” in Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998., Thirteenth Annual , vol.1, no. 7, pp.287-293 vol.1, 15-19 Feb 1998.
    [11]M. B. Camara, H. Gualous, F. Gustin, A. Berthon, and B. Dakyo, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—Polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587–597, Feb. 2010.
    [12]Hamid R. Karshenas1,2, Hamid Daneshpajooh2, Alireza Safaee2,Praveen Jain2 and Alireza Bakhshai2, “Bidirectional DC-DC Converters for Energy Storage Systems, ” 22, September, 2011.
    [13]黃承業,“以電容去離子技術去除無機鹽類之電吸附行為研究” 東海大學環境科學與工程學系碩士論文,中華民國一百零一年七月。
    [14]林弘仁,“製備活性碳電極於電容去離子技術應用” 東海大學環境科學與工程學系碩士論文,中華民國一百零一年八月。
    [15]H. Jung, S. Hwang, S. Hyun, K. Lee, and G. Kim, “Capacitative deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying,” Desalinization, vol. 216, pp. 377–385, 2007.
    [16]M. B. Camara, H. Gualous, F. Gustin, A. Berthon, and B. Dakyo, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—Polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587–597, Feb. 2010.
    [17]A. M. Pern´ıa, J. G. Norniella, J. A. Mart´ın-Ramos, J. D´ıaz, and J. A. Mart´ınez, “Up–down converter for energy recovery in a CDI desalination system,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3257– 3265, Jul. 2012.
    [18]R. Lu, L. Tian, C. Zhu, and H. Yu, “A new topology of switched capacitor circuit for the balance system of ultra-capacitor stacks,” in Proc. IEEE Vehicle Power Propulsion Conf., Sep. 2008, pp. 1–8.
    [19]D. Linzen, S. Buller, E. Karden, and E. W. De Doncker, “Analysis and evaluation of charge-balancing circuits on performance, reliability, and lifetime of supercapacitor systems,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1135–1141, Sep./Oct. 2005.
    [20]A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional dc–dc converter for interfacing ultracapacitor energy storage to fuel cell system,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3468–3473, Oct. 2010.
    [21]Microchip, dsPIC33FJ64GS606 datasheet,“16-bit Digital Signal Controllers(up to 64 KB Flash and 9 KB SRAM) with High-Speed PWM, ADC, and Comparators”,2009-2012.
    [22]程緯軒,“具數位化之可調式電流饋入型高壓電源供應器”,大同大學電機工程研究所碩士論文,中華民國一百零六年七月。
    [23]Microchip, “Assembler/Linker/Librarian User's Guide,” 2005.
    [24]Microchip, “MPLAB C30 C Compiler User's Guide,” 2007.
    [25]Minmax, “MJWI20-24S15 Model Selection User's Guide, ”2012.
    [26]Motorola, “LM2576Analog IC Device Data Guide, ”1999.
    [27]Z. Peng, D. Zhang, L. Shi, and Y. T. Yan, “High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization,” J. Mater. Chem.,vol. 22,no. 14,pp. 6603–6612, Feb. 2012.
    [28]Hui Ke, “Subminiature Signal Relay Device Data Guide, ”2011.
    [29]H. Gualous, D. Bouquain, A. Berthon, and Y. J. M. Kauffmann, “Experimental study of supercapacitor serial resistance and capacitance variations with temperature,” J. Power Sources, vol. 123, no. 1, pp. 86–93, Sep. 2003.
    [30]鄧名傑,陳錦明,“超級電池超級能耐”,科學發展514期,2015年10月。
    [31]S. Porada, R. Zhao, A. van der Wal, V. Presser, and Y. P. M. Biesheuvel, “Review on the science and technology of water desalination by capacitive deionization,” Progress Mater. Sci., vol. 58, no. 8, pp. 1388–1442, Oct. 2013.
    [32]M. Mossad, W. Zhang, and L. Zou, “Using capacitive deionisation for inland brackish groundwater desalination in a remote location,” Desalination, vol. 308, pp. 154–160, Jan. 2013.
    [33]Allegro, “ACS712 Selection Guide, ”2006.
    [34]Texas Instruments, “UA741 Model Selection User's Guide, ”1970.
    [35]SILICON LABS, Si8233, “0.5 AND 4.0 AMP ISO DRIVERS (2.5 AND 5 KVRMS),” 2015.
    [36]Hioki, “MR8847A Memory Hicopper User Guides, ”2017.
    [37]A. M. Pernia, F. J. Alvarez-Gonzalez, M. A. J. Prieto, P. J. Villegas, and Y. F. Nuno, “New control strategy of an up-down converter for energy recovery in a CDI desalination system,” IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3573–3581, Jul. 2014.
    [38]A. M. Pernía, F. J. Alvarez-González, J. Díaz, P. J. Villegas, and Y. F. Nuño, “Optimum peak current hysteresis control for energy recoveringconverter in CDIdesalination,” Energies, vol.7, no.6, pp.3823–3839, Jun. 2014

    無法下載圖示 全文公開日期 2023/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE