簡易檢索 / 詳目顯示

研究生: 陳冠宇
Kuan-Yu Chen
論文名稱: 電流變操控聚苯乙烯/四氧化三鐵核/殼結構微米粒子於免疫檢測
Electrorheological Operation of Polystyrene/Fe3O4 Core-Shell Microparticles for Immunoassay
指導教授: 陳建光
Jem-Kun Chen
口試委員: 陳志堅
Jhih-Chien Chen
范士岡
Shih-Kang Fan
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 209
中文關鍵詞: 聚苯乙烯鐵奈米粒子核-殼結構電流變粒子串Protein G抗體抗原偵測
外文關鍵詞: Polystyrene, Fe3O4 nanoparticle, Core/shell particle, Electrorheological, Particle chain, Protein G, Antibody, Antigenic detection
相關次數: 點閱:308下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗分為三個部份,第一部分以化學共沉澱法(Coprecipitation,CPT)製備出平均粒徑約為15.5nm之四氧化三鐵奈米粒子(Fe3O4 nanoparticles,FeNPs),再以無乳化劑乳化聚合法(Emulsionless polymerization)合成出粒徑約為2.2μm之聚苯乙烯微米粒子(Polystyrene microparticles,PSMPs)。以高介電性質之PSMPs作為基材,透過靜電吸附力將固定濃度的FeNPs包覆於PSMPs表面,形成PSMPs@FeNPs,再以包覆之次數將其命名為PF2、PF4、PF6、PF8、PF10的核-殼粒子系統。使用熱重量分析儀(TGA)做定量分析,PF10中FeNPs的含量最高可達23.43wt%,約有20萬顆粒子成功以靜電吸附力的方式包覆於PSMPs表面。
第二部分探討低介電性質FeNPs在核-殼粒子系統中所占比例提高,施加不同頻率的交流電場,使核-殼粒子受到之交流特徵頻率從300kHz降至100kHz即可驅動成串。再以Clausius−Mossotti理論公式之實部值(Real part,ε')與虛部值(Imaginary part,ε'')進行有效介電常數(Permittivity)的計算與預測,進而探討其核-殼粒子系統的電流變性質(Electroheological),並以光學顯微鏡(Optical microscopy,OM)觀察核-殼粒子系統受電場響應所表現之穿透率,呈現出不同的顯示效果,其中以PF10穿透率最高,可達59.94%。
第三部分將PF8核-殼粒子以不同濃度之APTES改質後,形成PSMPs@FeNPs@APTES的核-殼結構粒子,命名為PF8N1、PF8N2、PF8N3,續以75μg/mL的Protein G來探討APTES在核-殼粒子系統中所占比例不同而影響抓取Protein G的量,由Bradford assay之檢量線得知,PF8N3最高可抓取76.87%的Protein G,接著利用Protein G能與抗體的Fc區域結合之特性,使抗體不會因分子立體障礙而產生遮蔽效應無法與抗原反應,續與帶有螢光標籤的二抗反應後,以雷射共軛焦顯微鏡觀察確認反應之成功性。
藉由施加不同頻率的交流電場,測量各別複合粒子極化成串之穿透率分布,根據不同的響應頻率所對應的穿透率差異,來達到抗原偵測的目的。依照粒子表面抓取抗原的含量,其最大穿透度所對應的響應頻率分別為650kHz、750kHz及900kHz,其與未添加抗原時的響應頻率300kHz有所差異。


My thesis consists of three parts, including the synthesis of substrate, measurement of transmittance and observation of antigenic detection. First, iron oxide nanoparticles (FeNPs) which mean diameter was about 15.5nm prepared by using co-precipitation method. Sequentially, using emulsifier-free emulsion polymerization to prepare 2.2μm polystyrene microspheres (PSMPs) as a substrate. The electrostatic adsorption, the driving force, immobilized FeNPs on the substrate surface to synthesis PSMPs@FeNPs core/shell composited particles fully. According to increasing FeNPs adding times, samples were named as PF2, PF4, PF6, PF8 and PF10 respectively. With reaching the maximum, 23.43%, of the FeNPs content of PF10, the amount of FeNPs particles coated on the surface was around 200,000.
Second, the core/shell particles were prepared by low-permittivity FeNPs-encapsulated high-permittivity PSMPs, so the contents of FeNPs had significant effects on its eletrorheological properties. The AC frequency decreasing from 300kHz to 100kHz made the core/shell particles form the stringing. Then, predicting the effective permittivities of these composites from the real (ε') and imaginary parts (ε'') that were based on the Clausius−Mossotti formalism to discuss eletrorheological properties. Furthermore, encapsulated aqueous dispersion of PSMPs@FeNPs microparticles were put into display device, optical microscopy, to observe the various electroresponsive behaviors. Among all cases, PF10 reached the maximum, 59.94%, of the top-view transmittance.
Third, PF8 composite core/shell particles modified by different APTES concentration, samples were named as PF8N1, PF8N2 and PF8N3. Sequentially, using EDC/NHS to react with 75μg/mL of Protein G discussed the different amount that successfully reacted on the particle surface. In terms of calibration curve based on Bradford assay, PF8N3 was able to react with the highest proportion, 76.87%, of Protein G. Taking advantage of the unique property of Protein G, only connecting the Fc region of antibody, to modify antibodies on the particle surface. Then, using secondary antibody with fluorescent label to confirm whether antibodies were immobilized on the surface or not.
What’s more, applying different frequencies of AC electric field to measure the transmittance of each composite patricle was formed stringing structure after electric polarization. It depended on the response frequency corresponding to the transmission to achieve the purpose of antigenic detection. In accordance with the content of the antigen, a characteristic frequency antigenic detection was formed. Afterwards, the corresponding response frequencies of the maximum transmittance were 650kHz, 750kHz and 900kHz, respectively.

摘要 Abstract 致謝 目錄 圖目錄 表目錄 第1章 前言 1.1 研究背景 1.2 研究動機與目的 第2章 理論與文獻回顧 2.1 電子紙 2.1.1 電子紙簡介 2.1.2 電子紙顯示技術及原理 2.2 電場極化理論 2.3 超順磁性四氧化三鐵奈米粒子 2.3.1 磁性材料特性 2.3.2 共沉澱法(Co-precipitation) 2.3.3 微乳化法(Micro-emulsions) 2.3.4 水熱法(Solvothermal reaction) 2.4 聚苯乙烯微球 2.4.1 乳化聚合法 2.4.2 無乳化劑乳化聚合法 2.4.3 分散聚合法 2.4.4 懸浮聚合法 2.5 抗體(Antibody) 2.6 表面分子固定法 2.7 Protein G 第3章 儀器原理 3.1 X射線光電子能譜儀(XPS) 3.2 傅立葉轉換紅外線光譜儀(FT-IR) 3.3 X光繞射分析儀(XRD) 3.4 紫外光/可見光光譜儀(UV-Vis) 3.5 高解析度場發射掃描式電子顯微鏡(FE-SEM) 3.6 場發射穿透式電子顯微鏡(FE-TEM) 3.7 動態光散射粒徑分析儀(DLS) 3.8 雷射掃描式共軛焦顯微鏡 (LSCM) 3.9 熱重量分析儀(TGA) 3.10 超導量子干涉磁量儀(SQUID) 3.11表面電位分析儀(Zeta-potential) 第4章 實驗流程與方法 4.1 實驗流程圖 4.2 實驗藥品 4.3 實驗儀器 4.4 實驗步驟 4.4.1 四氧化三鐵奈米粒子(FeNPs)的製備 4.4.2 聚苯乙烯微球(PSMPs)之合成 4.4.3 PSMPs@FeNPs核-殼粒子之製備 4.4.4 PSMPs@FeNPs核-殼粒子磁感應之穿透率變化量測 4.4.5 交流電場極化成串顯示元件之製備 4.4.6 PSMPs@FeNPs核-殼粒子電場極化成串實驗 4.4.7 PSMPs@FeNPs核-殼粒子的胺基修飾 4.4.8 PFN@Protein G 核-殼微米粒子之製備 4.4.9 PFN@Protein G核-殼微米粒子之抗體修飾 4.4.10 PFN@Protein G-Ig核-殼微米粒子之抗原結合 第5章 結果與討論 5.1 PSMPs@FeNPs核-殼微米粒子光譜定性分析 5.1.1 FT-IR光譜分析 5.1.2 XRD結晶分析 5.1.3 DLS粒徑分析 5.1.4 TGA熱重分析 5.1.5 SQUID磁性分析 5.1.6 Zeta-potential 表面電位分析 5.2 PSMPs@FeNPs核-殼微米粒子影像型態分析 5.2.1 SEM表面型態分析 5.2.2 TEM穿透型態分析 5.3 PFN@Protein G-Ig核-殼微米粒子定性分析 5.3.1 FT-IR光譜分析 5.3.2 XRD結晶分析 5.3.3 XPS能譜分析 5.3.4 UV-vis光譜分析 5.3.5 DLS粒徑分析 5.3.6 SQUID磁性分析 5.3.7 Zeta potential表面電位分析 5.4 PFN@Protein G核-殼微米粒子影像型態分析 5.4.1 SEM表面形態分析 5.4.2 TEM穿透型態分析 5.4.3 雷射共軛焦螢光顯微鏡型態分析 5.5 核-殼微米粒子交流電場極化成串觀察分析 5.5.1 介電粒子溶液之驅動電壓測試 5.5.2 PSMPs@FeNPs粒子交流極化成串 5.5.3 PFN@Protein G粒子交流極化成串 5.5.4 PFN@Protein G-Ig-Antigen複合粒子交流極化成串 第6章 結論 參考文獻

[1] Lauhon LJ, Gudiksen MS, Wang D, Lieber CM. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002;420:57-61.
[2] Serpell CJ, Cookson J, Ozkaya D, Beer PD. Core@shell bimetallic nanoparticle synthesis via anion coordination. Nat Chem 2011;3:478-83.
[3] Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, et al. Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat Mater 2006;5:457-62.
[4] Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews 2012;112:2373-433
[5] Cheong S-W, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 2007;6:13-20.
[6] Van Roosbroeck R, Van Roy W, Stakenborg T, Trekker J, D'Hollander A, Dresselaers T, et al. Synthetic antiferromagnetic nanoparticles as potential contrast agents in MRI. ACS nano 2014;8:2269-78.
[7] Tucek J, Kemp KC, Kim KS, Zboril R. Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS nano 2014;8:7571-612.
[8] Lei Y, Lodge TP. Effects of component molecular weight on the viscoelastic properties of thermoreversible supramolecular ion gels via hydrogen bonding. Soft Matter 2012;8:2110.
[9] Correa-Duarte, M.A., Giersig, M., Kotov, N.A., Liz-Marzán, L.M. Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation. Langmuir, 1998, 14.22: 6430-6435.
[10] Joseph M.Crowley NKS, Linda Romano. Dipole moments of gyricon balls. Journal of Electrostatics 2002;55:247-59.
[11] Comiskey B, Albert JD, Yoshizawa H, Jacobson J. An electrophoretic ink for all-printed reflective electronic displays. Nature 1998;394:253-5.
[12] Wen W, Huang X, Yang S, Lu K, Sheng P. The giant electrorheological effect in suspensions of nanoparticles. Nat Mater 2003;2:727-30.
[13] Velev, Orlin D.; LENHOFF, Abraham M.; KALER, Eric W. A class of microstructured particles through colloidal crystallization. Science, 2000, 287.5461: 2240-2243.
[14] HALSEY, Thomas C.; MARTIN, James E. Electrorheological fluids. Scientific American, 1993, 269.4.
[15] T. Schneider, F. Nicholson, A. Khan, J.W. Doane, L.C. Chien, Flexible Encapsulated Cholesteric LCDs by Polymerization Induced Phase Separation, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2005, pp. 1568-1571.
[16] A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, A. Sakaigawa, Nanoparticle Embedded Polymer Dispersed Liquid Crystal for Wide Viewing Angle and Specular Glare Suppression, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2007, pp. 1355-1357.
[17] Y. Itoh, K. Minoura, Y. Asaoka, I. Ihara, E. Satoh, S. Fujiwara, Super Reflective Color LCD with PDLC Technology, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2007, pp. 1362-1365.
[18] Howard ME, Richley EA, Sprague R, Sheridon NK. Gyricon electric paper. Journal of the Society for Information Display 1998;6:215-7.
[19] R. Sakurai, S. Ohno, S.i. Kita, Y. Masuda, R. Hattori, Color and Flexible Electronic Paper Display using QR‐LPD® Technology, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2006, pp. 1922-1925.
[20] Fan S-K, Chiu C-P, Lin J-W. Electrowetting on polymer dispersed liquid crystal. Applied Physics Letters 2009;94:164109.
[21] Wang A-H, Hwang S-L, Kuo H-T. Effects of bending curvature and ambient illuminance on the visual performance of young and elderly participants using simulated electronic paper displays. Displays 2012;33:36-41.
[22] Hattori R, Yamada S, Masuda Y, Nihei N. A novel bistable reflective display using quick-response liquid powder. Journal of the Society for Information Display 2004;12:75-80. [23] R. Tao, J. Sun, Three-dimensional structure of induced electrorheological solid, Physical review letters, 67 (1991) 398.
[24] K. Lu, W. Wen, C. Li, S. Xie, Frequency dependence of electrorheological fluids in an ac electric field, Physical Review E, 52 (1995) 6329.
[25] Fan SK, Chiu CP, Huang PW. Transmittance tuning by particle chain polarization in electrowetting-driven droplets. Biomicrofluidics 2010;4:43011.
[26] Fan SK, Chiu CP, Hsu CH, Chen SC, Huang LL, Lin YH, et al. Particle chain display--an optofluidic electronic paper. Lab on a chip 2012;12:4870-6.
[27] H. Morgan, N.G. Green, AC electrokinetics: colloids and nanoparticles, Research Studies Press, 2003.
[28] C.A. Harper, Handbook of materials for product design, McGraw-Hill New York, NY, 2001.
[29] P. Maheshwari, Electronic Components and Processes, New Age International, 2006.
[30] Brown, E., Forman, N. A., Orellana, C. S., Zhang, H., Maynor, B. W., Betts, D. E., Jaeger, H. M., Generality of shear thickening in dense suspensions. Nature materials, 2010, 9.3: 220-224.
[31] U. Böttger, Dielectric properties of polar oxides, Polar oxides: properties, characterization and imaging, (2005).
[32] H. Pohl, Dielectrophoresis. 1978, Cambridge: Cambridge.
[33] J.M. Sung, Dielectrophoresis and Optoelectronic Tweezers for Nanomanipulation. 2007
[34] O.F. Mossotti, Discussione analitica sull'influenza che l'azione di un mezzo dielettrico ha sulla distribuzione dell'elettricita alla superficie di più corpi elettrici disseminati in esso, 1846.
[35] R. Clausius, Abhandlungen über die mechanische Wärmetheorie, F. Vieweg, 1864.
[36] C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, S.-K. Fan, Liquid lenses and driving mechanisms: A review, Journal of Adhesion Science and Technology, 26 (2012) 1773-1788.
[37] Valero A, Braschler T Fau - Renaud P, Renaud P. A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy. Lab on a Chip, 2010, 10.17: 2216-2225.
[38] Mürau P, Singer B. The understanding and elimination of some suspension instabilities in an electrophoretic display. Journal of Applied Physics 1978;49:4820-9.
[39] Jones TB. Electromechanics of Particles. UK: Cambridge University Press; 2005.
[40] Hayes RA, Feenstra BJ. Video-speed electronic paper based on electrowetting. Nature 2003;425:383-5.
[41] N. Van Landschoot, E. Kelder, J. Schoonman, Synthesis and characterization of LiCo1−xFexVO4 prepared by a citric acid complex method, Journal of Solid State Electrochemistry, 8 (2003) 28-33.
[42] W. Meissner, R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfähigkeit, Naturwissenschaften, 21 (1933) 787-788.
[43] C. Kittel, Introduction to Solid State Physics, 6th edn., 1986, in, Wiley.
[44] D.K. Cheng, Field and wave electromagnetics, Addison-Wesley New York, 1989.
[45] Y. Lai, W. Yin, J. Liu, R. Xi, J. Zhan, One-pot green synthesis and bioapplication of L-arginine-capped superparamagnetic Fe3O4 nanoparticles, Nanoscale research letters, 5 (2010) 302-307.
[46] A. Dias, A. Hussain, A. Marcos, A. Roque, A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides, Biotechnology advances, 29 (2011) 142-155.
[47] X. Wang, C. Zhao, P. Zhao, P. Dou, Y. Ding, P. Xu, Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system, Bioresource technology, 100 (2009) 2301-2304.
[48] Y. Wang, X. Wang, G. Luo, Y. Dai, Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system, Bioresource technology, 99 (2008) 3881-3884.
[49] S. Xuan, Y.-X.J. Wang, J.C. Yu, K.C.-F. Leung, Preparation, characterization, and catalytic activity of core/shell Fe3O4@ polyaniline@ Au nanocomposites, Langmuir, 25 (2009) 11835-11843.
[50] H. Li, Z. Li, T. Liu, X. Xiao, Z. Peng, L. Deng, A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads, Bioresource technology, 99 (2008) 6271-6279.
[51] E. Hee Kim, H. Sook Lee, B. Kook Kwak, B.-K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent, Journal of Magnetism and Magnetic Materials, 289 (2005) 328-330.
[52] O. Olsvik, T. Popovic, E. Skjerve, K.S. Cudjoe, E. Hornes, J. Ugelstad, M. Uhlen, Magnetic separation techniques in diagnostic microbiology, Clinical microbiology reviews, 7 (1994) 43-54.
[53] P. Gupta, C. Hung, F. Lam, D. Perrier, Synthesis and characterization of microspheres containing adriamycin and magnetite, International journal of pharmaceutics, 43 (1988) 167-177.
[54] T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, Journal of Magnetism and Magnetic Materials, 293 (2005) 483-496.
[55] A. Jordan, P. Wust, H. Fähling, W. John, A. Hinz, R. Felix, Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia, International Journal of Hyperthermia, 25 (2009) 499-511.
[56] U. Häfeli, Scientific and clinical applications of magnetic carriers, Springer, 1997.
[57] M.N. Widjojoatmodjo, A.C. Fluit, R. Torensma, J. Verhoef, Comparison of immunomagnetic beads coated with protein A, protein G, or goat anti-mouse immunoglobulins Applications in enzyme immunoassays and immunomagnetic separations, Journal of immunological methods, 165 (1993) 11-19.
[58] R.M. Fitch, M.B. Prenosil, K.J. Sprick, The mechanism of particle formation in polymer hydrosols. I. kinetics of aqueous polymerization of methyl methacrylate, in: Journal of Polymer Science Part C: Polymer Symposia, Wiley Online Library, 1969, pp. 95-118.
[59] W.D. Harkins, A General Theory of the Mechanism of Emulsion Polymerization1, Journal of the American Chemical Society, 69 (1947) 1428-1444.
[60] J.W. Goodwin, R.H. Ottewill, Properties of concentrated colloidal dispersions, J. Chem. Soc., Faraday Trans., 87 (1991) 357-369.
[61] R. Cox, M. Wilkinson, J. Creasey, A. Goodall, J. Hearn, Study of the anomalous particles formed during the surfactant‐free emulsion polymerization of styrene, Journal of Polymer Science: Polymer Chemistry Edition, 15 (1977) 2311-2319.
[62] H. Qi, W. Hao, H. Xu, J. Zhang, T. Wang, Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure, Colloid and Polymer Science, 287 (2009) 243-248.
[63] D. L. Nelson, A. L. L., M. M. Cox, Lehninger principles of biochemistry. WH Freeman: 2008; p 869-870.
[64] Rusmini F., Zhong Z., Feijen J., Protein immobilization strategies for protein biochips. Biomacromolecules 2007;8:1775-89.
[65] Hermanson GT. Bioconjugate techniques: Academic press; 2013.
[66] Sehgal D., Vijay IK., A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Analytical biochemistry 1994;218:87-91.
[67] ThermoScientific. NHS and Sulfo-NHS 2011.
[68] Bilitewski, U., Protein-sensing assay formats and devices. Analytica Chimica Acta 2006, 568, (1–2), 232-247.
[69] Mathias Uhlen, B. G., Bjorn Nilsson, Gatenbeck,LennarPt hilipson, and; Lindberg, M., Complete Sequence of the Staphylococcal Gene Encoding Protein A. THE JOURNA OF LBIOLOGICAL CHEMISTRY 1984, 259, 8.
[70] Bengt Guss, M. E., Anders Olsson,Mathias Uhlen, Ann-Kristin Frej, Hans Jornvall, Jan Ingmar Flock and Martin Lindberg, Structure of the IgG-binding regions of streptococcal protein G. The EMBO Journal 1986, 5, 9.
[71] Song, H. Y.; Zhou, X.; Hobley, J.; Su, X., Comparative study of random and oriented antibody immobilization as measured by dual polarization interferometry and surface plasmon resonance spectroscopy. Langmuir : the ACS journal of surfaces and colloids 2012, 28, (1), 997-1004.
[72] Zheng, Z., Chinnasamy, N., Morgan, R. A Protein L: a novel reagent for the detection of chimeric antigen receptor (CAR) expression by flow cytometry. Journal of translational medicine, 2012, 10.1: 29.
[73] J. LIOU, Refining the grip on nature’s fine grains, Drilling contractor, 68 (2012)
[74] W. Jiang, X. Chen, Y. Niu, B. Pan, Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water, Journal of hazardous materials, 243 (2012) 319-325.
[75] LEÓN-BERMÚDEZ, Adan-Yovani; SALAZAR, Ramiro. Synthesis and characterization of the polystyrene-asphaltene graft copolymer by FT-IR spectroscopy. CT&F-Ciencia, Tecnología y Futuro, 2008, 3.4: 157-167.
[76] Waldron, R.D. Infrared spectra of ferrites. Physical Review, 1955, 99.6: 1727.
[77] Ma, M., Zhang, Y., Yu, W., Shen, H. Y., Zhang, H. Q., Gu, N. Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212.2: 219-226.
[78] Wang, L., Ji, H., Wang, S., Kong, L., Jiang, X., Yang, G. Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale, 2013, 5.9: 3793-3799
[79] A. Patterson, The Scherrer formula for X-ray particle size determination, Physical review, 56 (1939) 978.
[80] J.D. Peterson, S. Vyazovkin, C.A. Wight, Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly (propylene), Macromolecular Chemistry And Physics, 202 (2001) 775-784.
[81] NABID, Mohammad Reza; BIDE, Yasamin; ABUALI, Maryam. Copper core silver shell nanoparticle–yolk/shell Fe3O4@ chitosan-derived carbon nanoparticle composite as an efficient catalyst for catalytic epoxidation in water. RSC Advances, 2014, 4.68: 35844-35851.
[82] White, L. D.; Tripp, C. P. Reaction of (3-aminopropyl) dimethylethoxysilane with amine catalysts on silica surfaces. Journal of Colloid and Interface Science, 2000, 232.2: 400-407.
[83] Heiney, P. A., Grüneberg, K., Fang, J., Dulcey, C., Shashidhar, R.Structure and growth of chromophore-functionalized (3-aminopropyl) triethoxysilane self-assembled on silicon. Langmuir, 2000, 16.6: 2651-2657.
[84] Feng, B., Hong, R. Y., Wang, L. S., Guo, L., Li, H. Z., Ding, J., Wei, D. G, Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 328.1: 52-59.
[85] HAŠEK, Jiří; STREIBLOVÁ, Eva. Fluorescence microscopy methods. In:Yeast Protocols. Humana Press, 1996. p. 391-405.
[86] Arntz, Y., Seelig, J. D., Lang, H. P., Zhang, J., Hunziker, P., Ramseyer, J. P., Gerber, C, .Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology, 2003, 14.1: 86.
[87] Ishimaru, Akira. Electromagnetic wave propagation, radiation, and scattering. Englewood Cliffs, NJ: Prentice Hall, 1991.
[88] Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP, 1965, 20.5: 1307-1314.

無法下載圖示 全文公開日期 2020/07/28 (校內網路)
全文公開日期 2030/07/28 (校外網路)
全文公開日期 2025/07/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE