簡易檢索 / 詳目顯示

研究生: 陳昱庭
Yu-Ting Chen
論文名稱: 主動光學元件之功能性鏡面鍍膜
Functional mirror coatings on active optical components
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 李三良
San-Liang Lee
廖顯奎
Shien-Kuei Liaw
余長治
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 91
中文關鍵詞: 介電質布拉格反射鏡光學鍍膜
外文關鍵詞: DBR, RCLED
相關次數: 點閱:126下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在設計與製作三種主動光學元件之功能性鏡面鍍膜,包括共振腔發光二極體介電質布拉格反射鏡、垂直共振腔面射型雷射介電質布拉格反射鏡、晶體光纖光源的入射端面雙波段鍍膜。使用MACLEOD作為設計軟體,薄膜的材料為SiO2與TiO2,使用此兩種高低折射率材料堆疊不同厚度而形成所需的特定反射率頻譜,以電子槍蒸鍍系統蒸鍍薄膜,並觀察製鍍前後,元件各種特性的比較。共振腔發光二極體在完成製鍍後,室溫、連續波操作下,發光頻譜半高寬收窄至4到6nm,半功率角從一般LED的60°收窄為45°左右,光輸出功率為未鍍膜前1.2~1.5倍以上,其中20um直徑元件在25mA操作電流時可達0.53mW光輸出功率,目前是受熱效應限制、還未封裝,且元件可在環境溫度達313K時仍穩定工作。垂直共振腔面射型雷射元件完成上層布拉格反射鏡製鍍後,可以觀察到元件在室溫、連續波操作下雷射現象的產生,閾值電流能下降至領先目前其他研究團隊的0.5mA附近,峰值波長約分布在407nm到411nm左右,元件半高寬可達0.4nm到0.6nm,旁模抑制比11dB以上,發散角約為6°的單模雷射。最後晶體光纖部份,雖然頻寬在鍍膜後由185nm拓寬為221nm,但光輸出功率並未如預期上升,判斷是製程中端面受汙染導致薄膜不夠平整與龜裂現象產生。


    This study focused on the design and fabrication of functional mirror coatings for three active optical components including the dielectric distributed Bragg reflector (DBR) of Resonant Cavity Light Emitting Diode (RCLED), the dielectric DBR of Vertical-Cavity Surface-Emitting Laser (VCSEL), and the dichromatic mirror on the input facet of an optically pumped crystal fiber light source. We used MACLEOD as the design software, and SiO2 and TiO2 as the coating materials in designing a multi-layer thin film to attain a specific reflectance spectrum by alternatively stacking the two materials of different refractive index and of designed thickness.
    The characteristics of the three active components before and after the mirror coating deposition by using e-gun evaporation were compared as follows: for the RCLED, the FWHM of its emitting spectrum was reduced from ~16nm to 4-6nm, the half-power angle was reduced from 60∘of traditional LEDs to approximately 45∘, the light output power was 1.2 to 1.5 times higher than that before coating and 0.53mW was obtained from the 20um-diameter RCLED under 25mA without heat-sinking packaging, and the emission peak wavelength remained stable up to a temperature of 313K. As for the VCSEL diodes, after the completion of its top dielectric DBR, lasing was observed under continuous-wave operation at room temperature. The threshold current was as low as 0.5mA, ahead of other research groups. Its peak wavelength ranged from 407 nm to 411 nm, the FWHM was only 0.4nm to 0.6nm, the side mode suppression ratio was above 11dB, and the divergence angle was about 6∘for 3um-diameter VCSEL. Single-mode VCSEL was realized. Finally, for the crystal fiber light source, although the emission band width was increased from 185nm to 221nm after the coating, the light output power was not increased as expected, which was attributed to unwanted particles deposited on the facet during the fabrication resulting in an uneven coating with several cracks near the fiber core.

    摘要 I Abstract II 致謝 III 目錄 IV 圖片目錄 VI 表格目錄 IX 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 5 第二章 光學薄膜特性與電子槍蒸鍍系統 9 2.1 光學薄膜特性分析 9 2.1.1 光學薄膜理論 9 2.1.2 薄膜材料特性 12 2.1.3 Macleod薄膜設計軟體 15 2.2 電子槍介電質蒸鍍系統 20 2.2.1 電子槍蒸鍍原理 20 2.2.2 監控法 22 第三章 共振腔發光二極體 26 3.1 共振腔發光二極體 26 3.2 布拉格反射鏡 27 3.3 元件架構與設計理論 29 3.4 實驗結果與討論 32 第四章 垂直共振腔面射型雷射 48 4.1 垂直共振腔面射型雷射 48 4.2 元件架構與設計理論 52 4.3 實驗結果與討論 55 第五章 晶體光纖寬頻光源入射端鍍膜 63 5.1 光學薄膜設計 63 5.2 實驗結果與討論 65 第六章 結論與未來展望 71 6.1 結論 71 6.2 未來展望 72 參考文獻 74

    [1]. Bell Lab. The Telescope this book discusses metal reflectors in a historical context; see pp. 220–227 (McGraw Hill, New York, 1922)
    [2]. Horng R. H., Wuu D. S., Wei S. C., Huang M. F., Chang K. H., Liu P. H., and Lin K. C.“AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology” Appl. Phys.Lett. 75, 154 (1999a)
    [3]. Horng R. H., Wuu D. S., Wei S. C., Tseng C. Y., Huang M. F., Chang K. H., Liu P. H., and Lin K. C.“AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding” Appl. Phys. Lett.75, 3054 (1999b)
    [4]. Kato T., Susawa H., Hirotani M., Saka T., Ohashi Y., Shichi E., and Shibata S. “GaAs/GaAlAs surface emitting IR LED with Bragg reflector grown by MOCVD” J. Cryst. Growth 107, 832 (1991)
    [5]. Born M. and Wolf E. Principles of Optics 6th edition (Pergamon Press, New York, 1989)
    [6]. Kish F. A. and Fletcher R. M. “AlGaInP light-emitting diodes” in High Brightness Light-Emitting Diodes edited by G. B. Stringfellow and M. G. Craford, Semiconductors and Semimetals 48 (Academic, SanDiego, 1997)
    [7]. Chiou S.-W., Lee C. P., Huang C. K., and Chen C. W. “Wide angle distributed Bragg reflectors for 590nm amber AlGaInP light-emitting diodes” J. Appl. Phys. 87, 2052 (2000)
    [8]. E. Fred. Schubert, "Light emitting diode," Cambridge University Press, New York, 2006.
    [9]. Schubert E. F., Tu L.-W., Zydzik G. J., Kopf R. F., Benvenuti A., and Pinto M. R. “Elimination of heterojunction band discontinuities by modulation doping” Appl. Phys. Lett. 60, 466 (1992a)
    [10]. Nakayama T., Itoh Y., and Kakuta A. “Organic photo- and electroluminescent devices with double mirrors” Appl. Phys. Lett. 63, 594 (1993)
    [11]. Hunt N. E. J., Vredenberg A. M., Schubert E. F., Becker P. C., Jacobson D. C., Poate J. M., and Zydzik G. J. “Spontaneous emission control of Er3+ in Si / SiO2 microcavities” in Confined Electrons and Photons edited by E. Burstein and C. Weisbuch (Plenum Press, New York, 1995b)
    [12]. Maaskant, P.; Akhter, M.; Roycroft, B.; O'Carroll, E.; Corbett, B. "Fabrication of GaN-based resonant cavity LEDs," Physica Status Solidi (A) Applied Research vol. 192 (2) p. 348-353 , 2002
    [13]. Dorsaz, J.; Carlin, J. F.; Zellweger, C. M.; Gradecak, S.; Ilegems, M. "InGaN/GaN resonant-cavity LED including an AlInN/GaN Bragg mirror,"Physica Status Solidi (A) Applied Research vol. 201 (12) p. 2675-2678 , 2004
    [14]. Horng, Ray H.; Wang, Wei K.; Huang, Shin Yung; Wuu, Dong Sing "Effect of resonant cavity in wafer-bonded green InGaN LED with dielectric and silver mirrors,"IEEE Photonics Technology Letters vol. 18 (3) p. 457-459 , 2006
    [15]. Moudakir, T.;Genty, F.; Kunzer, M.; Börner, P.; Passow, T. "Design, fabrication, and characterization of near-milliwatt-power RCLEDs emitting at 390 nm,"et al.IEEE Photonics Journal vol. 5(6) 2013
    [16]. J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, "An optically pumped GaN–AlGaN vertical cavity surface emitting laser," Applied Physics Letters, vol. 69, pp. 1-3, 1996.
    [17]. C.-C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, et al., "Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector," Applied Physics Letters, vol. 87, pp.081105-081105-3, 2005.
    [18]. J.-T. Chu, T.-C. Lu, M. You, B.-J. Su, C.-C. Kao, H.-C. Kuo, and S. C. Wang, "Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers," Applied Physics Letters, vol. 89, pp.121112-121112-3, 2006.
    [19]. T.-C. Lu, C.-C. Kao,H.-C. Kuo, G.-S. Huang, and S.-C. Wang, "CW lasing of current injection blue GaN-based vertical cavity surface emitting laser," Applied Physics Letters, vol. 92, pp. 141102-141102-3, 2008.
    [20]. T.-C. Lu, S.-W. Chen, T.-T. Wu, P.-M. Tu, C.-K. Chen, C.-H. Chen, et al., "Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature," Applied Physics Letters, vol. 97, pp. 071114-071114-3, 2010.
    [21]. Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, "Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection," Applied Physics Express, vol. 1, p. 121102, 2008
    [22]. K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, "Improvement in Lasing Characteristics of GaN-based Vertical-Cavity Surface-Emitting Lasers Fabricated Using a GaN Substrate," Applied Physics Express, vol. 2, p. 052101, 2009.
    [23]. D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, et al., "Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature," Applied Physics Express, vol. 4, p. 072103, 2011.
    [24]. 李正中,薄膜光學與鍍膜技術,第七版,藝軒出版社,2012。
    [25]. 劉皓瑜,「摻鉻鎂橄欖石晶體光纖的製程改進與光學鍍膜」,國立台灣科技大學電子工程所碩士學位論文,台北,2013。
    [26]. J. C. Manifacier, J. Gasiot, J. P. Filland, “Simple method for determination of optical constant n, k and thickness of weekly absorbing thin films”, J. Phy. E. : Sci. Inst., 9, pp. 1002-1004, 1976.
    [27]. R. Swanepoel, “ Determination of the thickness and optical constant of amorphous silicon”, J. Phy. E. : Sci.Inst., 16, pp. 1214-1222, 1983.
    [28]. Essential Macleod, ver. 8.13, Thin Film Center Inc., http://www.thinfilmcenter.com.
    [29]. Richardson, O. W. Thermionic Emission from Hot Bodies. Wexford College Press. p. 196 , 2003
    [30]. 盧廷昌、王興宗,半導體雷射技術,五南圖書,台北,2010。
    [31]. 余孟純,「氮化鎵垂直共振腔面射型光源之製造與特性量測」,國立台灣科技大學電子工程所碩士學位論文,台北,2014。
    [32]. 張棋傑,「氮化鎵垂直共振腔面射型雷射與發光二極體之製造與特性量測」國立台灣科技大學電子工程所碩士學位論文,台北,2015。
    [33]. M. Ogura, W. Hsin, M. C. Wu, S. Wang, J. R. Whinnery, S. C. Wang, et al., "Surface‐emitting laser diode with vertical GaAs/GaAlAs quarter‐wavelength multilayers and lateral buried heterostructure," Applied Physics Letters, vol. 51, pp. 1655-1657, 1987.

    QR CODE