簡易檢索 / 詳目顯示

研究生: 柳廷昌
Ting-Chung Liu
論文名稱: 具超高亮度與深紅光之ITO-free共振腔之有機發光二極體
High brightness and deep-red emission organic light-emitting diodes employing the ITO-free electrode with micro-cavity.
指導教授: 李志堅
Chih-Chien Li
口試委員: 劉舜維
Shuen-Wei Liu
范慶麟
Ching-Lin Fan
張志豪
Chih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 58
中文關鍵詞: 有機發光二極體銅電極微共振腔小分子有機材料磷光材料大面積有機發光二極體
外文關鍵詞: Organic Light Emitting Diode (OLED), copper electrode, micro-cavity, small molecule organic material, phosphorescent organic material, large area OLED
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VII 表索引 IX 第一章 緒論 1 1.1 前言 1 1.2 有機發光二極體發展歷史 2 第二章 文獻回顧 3 2.1 歷年紅光元件 3 2.2 ITO Free之應用 3 2.3 高效率元件製備 7 2.4 微共振腔相關理論應用 8 2.5 研究動機 10 第三章 理論基礎 10 3.1 電致發光原理 11 3.2 元件電流限制 13 3.3 主客體發光機制 14 3.4 微共振腔效應 15 第四章 實驗架構 18 4.1 實驗設備 18 4.1.1 超音波清洗機 18 4.1.2 旋轉塗布機 18 4.1.3 曝光機 18 4.1.4 材料純化系統 19 4.1.5 連續高真空熱蒸鍍系統 21 4.1.6 氮氣循環手套箱 22 4.2 實驗前置作業 23 4.2.1 有機材料純化 23 4.2.2 黃光微影製程 23 4.3 實驗步驟 26 4.3.1 基板清洗 26 4.3.2 高真空熱蒸鍍製程 26 4.4.3 元件封裝 27 4.4 量測設備 28 4.4.1 探針式膜厚儀 28 4.4.2 橢圓偏振儀 29 4.4.3 分光式輝度計 29 4.4.4 光致發光光譜儀 30 4.4.5 吸收光譜儀 31 4.4.6 暫態電致發光系統 31 4.4.7 積分球 32 4.4.8 原子力顯微鏡 32 4.4.7 光學工程模擬軟體系統 32 4.5 材料介紹 34 4.5.1 紅光磷光材料 35 4.5.2 金屬銅、金屬銀 37 第五章 結果與討論 38 5.1 標準傳統紅光元件 38 5.2 金屬做陽極電極 39 5.3 微共振腔結構 42 5.4 生醫科技因素 46 5.5 改善電極使用 49 5.6 未來展望 53 第六章 結論 54 參考文獻 55

    [1] Lin, C. Y., Hu, N. W., Chang, H. W., Lu, C. Y., Chen, C. Y., & Wu, C. C. (2016). Efficient transparent small-molecule organic light-emitting devices adopting laminated transparent top electrodes. Organic Electronics, 28, 25-30.
    [2] Chwang, A. B., Rothman, M. A., Mao, S. Y., Hewitt, R. H., Weaver, M. S., Silvernail, J. A., Rajan, K., Hack, M., Brown, J. J., Chu, X.& Moro, L. (2003). Thin film encapsulated flexible organic electroluminescent displays. Applied Physics Letters, 83(3), 413-415.
    [3] Villani, F., Vacca, P., Nenna, G., Valentino, O., Burrasca, G., Fasolino, T., Minarini, C.& Della Sala, D. (2009). Inkjet printed polymer layer on flexible substrate for OLED applications. The Journal of Physical Chemistry C, 113(30), 13398-13402.
    [4] Kim, D. Y., Han, Y. C., Kim, H. C., Jeong, E. G., & Choi, K. C. (2015). Highly Transparent and Flexible Organic Light‐Emitting Diodes with Structure Optimized for Anode/Cathode Multilayer Electrodes. Advanced Functional Materials, 25(46), 7145-7153.
    [5] Avci, P., Gupta, G. K., Clark, J., Wikonkal, N., & Hamblin, M. R. (2014). Low‐level laser (light) therapy (LLLT) for treatment of hair loss. Lasers in surgery and medicine, 46(2), 144-151.
    [6] Zarei, M., Wikramanayake, T. C., Falto-Aizpurua, L., Schachner, L. A., & Jimenez, J. J. (2016). Low level laser therapy and hair regrowth: an evidence-based review. Lasers in medical science, 31(2), 363-371.
    [7] Jeon, Y., Choi, H. R., Lim, M., Choi, S., Kim, H., Kwon, J. H., Park, K. C.& Choi, K. C. (2018). A wearable photobiomodulation patch using a flexible red‐wavelength OLED and its in vitro differential cell proliferation effects. Advanced Materials Technologies, 3(5), 1700391.
    [8] Park, S., Lim, J. T., Jin, W. Y., Lee, H., Kwon, B. H., Cho, N. S., Han, J. H., Kang, J. W., Yoo, S.& Lee, J. I. (2017). Efficient large-area transparent OLEDs based on a laminated top electrode with an embedded auxiliary mesh. ACS Photonics, 4(5), 1114-1122.
    [9] Pope, M., Kallmann, H. P., & Magnante, P. J. (1963). Electroluminescence in organic crystals. The Journal of Chemical Physics, 38(8), 2042-2043.
    [10] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    [11] C. W. Tang, S. A. VanSlyke and C.-H. Chen, Appl. Phys. Lett., 65, 3610 (1989).
    [12] Sun, Y., Yang, X., Feng, Z., Liu, B., Zhong, D., Zhang, J., Zhou, G.& Wu, Z. (2019). Highly Efficient Deep-Red Organic Light-Emitting Devices Based on Asymmetric Iridium (III) Complexes with the Thianthrene 5, 5, 10, 10-Tetraoxide Moiety. ACS applied materials & interfaces, 11(29), 26152-26164.
    [13] Lu, G. Z., Zhu, Q., Liu, L., Wu, Z. G., Zheng, Y. X., Zhou, L., Zuo, J. L.& Zhang, H. (2019). Pure Red Iridium (III) Complexes Possessing Good Electron Mobility with 1, 5-Naphthyridin-4-ol Derivatives for High-Performance OLEDs with an EQE over 31%. ACS applied materials & interfaces, 11(22), 20192-20199.
    [14] Jeon, Y., Choi, H. R., Lim, M., Choi, S., Kim, H., Kwon, J. H., Park, K. C.& Choi, K. C. (2018). A wearable photobiomodulation patch using a flexible red‐wavelength OLED and its in vitro differential cell proliferation effects. Advanced Materials Technologies, 3(5), 1700391.
    [15] Liu, S. W., Su, T. H., Chang, P. C., Yeh, T. H., Li, Y. Z., Huang, L. J., Chen, Y. H.& Lin, C. F. (2016). ITO-free, efficient, and inverted phosphorescent organic light-emitting diodes using a WO3/Ag/WO3 multilayer electrode. Organic Electronics, 31, 240-246.
    [16] Yeh, T. H., Lee, C. C., Shih, C. J., Kumar, G., Biring, S., & Liu, S. W. (2018). Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes. Organic Electronics, 59, 266-271.
    [17] Parthasarathy, G., Burrows, P. E., Khalfin, V., Kozlov, V. G., & Forrest, S. R. (1998). A metal-free cathode for organic semiconductor devices. Applied Physics Letters, 72(17), 2138-2140.
    [18] Ok, K. H., Kim, J., Park, S. R., Kim, Y., Lee, C. J., Hong, S. J., Kwak, M. G., Kim, N., Han, C. J.& Kim, J. W. (2015). Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes. Scientific reports, 5, 9464.
    [19] Song, M. G., Kim, K. S., Yang, H. I., Kim, S. K., Kim, J. H., Han, C. W., Choi, H. C., Pode, R.& Kwon, J. H. (2020). Highly reliable and transparent Al doped Ag cathode fabricated using thermal evaporation for transparent OLED applications. Organic Electronics, 76, 105418.
    [20] Uoyama, H., Goushi, K., Shizu, K., Nomura, H., & Adachi, C. (2012). Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 492(7428), 234-238.
    [21] Bulović, V., Khalfin, V. B., Gu, G., Burrows, P. E., Garbuzov, D. Z., & Forrest, S. R. (1998). Weak microcavity effects in organic light-emitting devices. Physical Review B, 58(7), 3730.
    [22] Valeur, B. (2003). Molecular fluorescence. Digital Encyclopedia of Applied Physics, 477-531.
    [23] O’brien, D. F., Baldo, M. A., Thompson, M. E., & Forrest, S. R. (1999). Improved energy transfer in electrophosphorescent devices. Applied Physics Letters, 74(3), 442-444.
    [24] Liao, L. S., Slusarek, W. K., Ricks, M. L., Young, R. H., & Comfort, D. L. (2009). U.S. Patent No. 7,629,741. Washington, DC: U.S. Patent and Trademark Office.
    [25] Lyu, Y. Y., Kwak, J., Jeon, W. S., Byun, Y., Lee, H. S., Kim, D., Lee, C.& Char, K. (2009). Highly efficient red phosphorescent OLEDs based on non‐conjugated silicon‐cored spirobifluorene derivative doped with Ir‐complexes. Advanced Functional Materials, 19(3), 420-427.
    [26] Főrster, T. (1959). 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discussions of the Faraday Society, 27, 7-17.
    [27] Zhu, M., & Yang, C. (2013). Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chemical Society Reviews, 42(12), 4963-4976.
    [28] Dexter, D. L., & Schulman, J. H. (1954). Theory of concentration quenching in inorganic phosphors. The Journal of Chemical Physics, 22(6), 1063-1070.
    [29] Dexter, D. L. (1953). A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 21(5), 836-850.
    [30] Park, C. H., Kim, J. G., Jung, S. G., Lee, D. J., Park, Y. W., & Ju, B. K. (2019). Optical characteristics of refractive-index-matching diffusion layer in organic light-emitting diodes. Scientific reports, 9(1), 1-10.
    [31] Pope, M., Kallmann, H. P., & Magnante, P. J. (1963). Electroluminescence in organic crystals. The Journal of Chemical Physics, 38(8), 2042-2043.

    無法下載圖示 全文公開日期 2025/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE