簡易檢索 / 詳目顯示

研究生: 陳人傑
Ren-Jie Chen
論文名稱: 具室溫鐵磁性釤摻雜二氧化鈰奈米顆粒之電子特性與局部結構研究
The Electronic Property and The Local Structure of Room-Temperature Ferromagnetic Nanocrystalline Sm-doped CeO2
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 董崇禮
Chung-Li Dong
陳洋元
Yang-Yuan Chen 
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 92
中文關鍵詞: CeO2SmXASSQUIDRTFM
外文關鍵詞: CeO2, Sm, XAS, SQUID, RTFM。
相關次數: 點閱:252下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用共沉澱法製備掺雜Sm的CeO2 奈米粉末。奈米粉末之晶相、結構及室溫下磁性分別利用X光繞射儀(XRD)、吸收光譜 (X-ray Absorption Spectroscopy,XAS)、磁圓偏振二向性(Magnetic Circular Dichroism,MCD)、及超導量子干涉磁化儀 (Superconducting Quantum Interference Device Magnetometer, SQUID) 進行分析。本研究並利用延伸 X 光吸收精細結構 (The Extended X-ray Absorption Fine Structure (EXAFS))分析奈米粉末中不同元素的配位數及鍵長的改變。結果顯示,以此方式製備之CeO2的Sm之價態為三價;Sm離子以Sm2O3氧化物的型態存在於CeO2奈米顆粒內,且XAS光譜分析結果顯示,Sm2O3傾向於分佈在CeO2顆粒表面。Sm2O3形式將使周圍的CeO2形成氧空缺,使樣品的Ce3+含量上升,此結果同時造成飽和磁化量微幅的增加。


The Sm-doped CeO2 nanoparticles were prepared by the precipitation method. The crystal structure, phase and room temperature magnetism of the nanoparticles were investigated by X-ray Diffraction (XRD), X-ray Absorption Spectroscopy(XAS), Magnetic Circular Dichroism (MCD) and Superconducting Quantum Interference Device (SQUID). The change of coordination number and bond length of different elements inside the nanoparticles were analyzed by the Extended X-ray Absorption Fine Structure (EXAFS) spectra. Our results presented that the valence of Sm is tri-valence. In addition, the formation of Sm2O3 was observed. According to the XAS analysis results, Sm2O3 clusters tend to locate at the surface of CeO2 particles. The existence of Sm2O3 also lead to the formation of oxygen vacancy at the interface between Sm2O3 and CeO2, and then increase the concentration of Ce3+. Above differences including the concentration of Ce3+ as well as the distribution result in the enhancement of Ms.

中文摘要 I Abstract II 目錄 III 圖索引 V 表索引 VII 第一章 緒論 1 1.1前言 1 1.2研究背景. 3 1.3 研究動機與目的 4 第二章 材料特性與研究背景 6 2.1 二氧化鈰的基本性質 6 2.1.1 物理性質及晶體結構. 6 2.1.2 光學性質 7 2.1.3 化學性質 7 2.2 磁性理論 8 2.2.1 磁性質的分類 9 2.2.2 稀磁性半導體研究的背景 13 2.3 稀磁性半導體鐵之磁性模型. 21 2.3.1 雙交換機制 (Double exchange mechanism ; DE) 24 2.3.2 束縛極化子模型 (Bound magnetic polaron ; BMP) 24 2.3.3 超交換偶合機制 (Superexchange Interaction) 25 2.4 燃料電池簡介 26 2.4.1 燃料電池的歷史 26 2.4.2 燃料電池的特點 27 2.4.3 燃料電池的分類及應用範圍 28 2.4.4 固體氧化物燃料電池原理及特點 29 2.4.5 固體氧化物燃料電池的特點 30 2.4.6 固態電解質 31 第三章 實驗方法 32 3.1 二氧化鈰奈米顆粒之製備 32 3.2 二氧化鈰奈米顆粒之分析 32 3.2.1 XRD 分析 32 3.2.2 SQUID 分析 33 3.2.3 XAS 介紹 35 3.2.4 XAS 分析量測方法 40 3.2.5 XAS數據分析. 48 3.3 磁圓偏振二向性(MCD) 53 3.3.1 MCD 簡介 53 3.3.2 MCD 實驗方法 54 第四章 結果與討論 57 4.1 XRD分析 57 4.2 XANES分析 58 4.3 EXAFS分析 69 4.4 XRD、XANES和EXAFS 綜合討論與分析 76 4.5 磁性分析 79 第五章 結論. 85 參考文獻 86

[1] 胡裕民,「III-V 稀磁性半導體薄膜之研究與發展」,物理雙月刊,第二六卷,第四期,第587-598頁 (2004)。
[2] 許華書、黃榮俊,「以3d過渡金屬摻雜氧化物之稀磁性半導體研究」物理雙月刊,第二十六卷,第四期,第599-606頁 (2004)
[3] R. Janisch, P. Gopal, and N. A. Spaldin, Journal of Physics: Condensed Matter, Vol. 17, pp. R657 (2005)
[4] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, Vol. 287, pp. 1019 (2000)
[5] W. K. Park, R. J. Ortega-Hertogs, J. Moodera, A. Punnoose, and M. S. Seehra, Journal of Applied Physics, Vol. 91, pp. 8093 (2002).
[6] Y. Matsumoto, R Takahashi, M Murakami, Japanese Journal of Applied Physics, Part 2, Vol. 40, pp. 1204 (2001).
[7] M. Venkatesan, C. B. Fitzgerald ,J. M. D. Coey, NATURE, Vol. 430,pp 630 (2004)
[8] 趙李益,「氧化釔的添加對 Sr2FeMoO6導電機構的影響」,國立成功大學材料科學及工程學系碩士論文,(2009)
[9] 盧盈靜, 「鋇、鋁的添加對 La2/ 3Ca1/3 MnO3之導電機構及磁阻效應之影響」,國立成功大學材料科學及工程學系,碩士論文,(2002)
[10] C. Zener, Physical Review, Vol. 81, pp. 440 (1951)
[11] R. Janischand and N. A. Spaldin, Physical Review B, Vol.73, pp. 035201 (2006)
[12] H. S. Hsu and J. C. A. Huang, Applied Physical Letters, Vol. 88, pp. 242507 (2006).
[13] H. S. Hsu and J. C. A. Huang, Applied Physical Letters, Vol. 90, pp. 102606 (2007).
[14] M. Y. Ge, H. Wang, E. Z. Lin, J. F. Liu, J. Z. Jiang, Y. K. Li, Z. A. Xu, and H. Y. Li, Applied Physical Letters, Vol. 93, pp. 062505 (2008).
[15] M. Chandra Dimri, H. Khanduri, H. Kooskora1, J. Subbi, I. Heinmaa, A. Mere, J. Krustok, and R. Stern, Phys. Status Solidi A, Vol 209,pp 353 (2012)
[16] A Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald and K. M. Krishnan, Physical Review Letters, Vol. 94, pp. 157204 (2005).
[17] J. M. D. Coey, M. Venkatestan, P. Stamenov, C. B. Fitzgerald and L. S. Dorneles, Physical Review B, Vol.72, pp. 024450 (2005).
[18] S. Phokaa, P. Laokula, E. Swatsitanga, V.Promarakb, S. Seraphinc, and S.Maensiria, Materials Chemistry and Physics, Vol. 115, pp. 423 (2009).
[19] 張宏毅,二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性,國立成功大學化學工程學系博士論文,(2005).
[20] X. L. Song, G. Z. Qiu and P. Qu, Rare Metal Materials and Engineering, Vol. 33, pp. 29 (2004).
[21] P. Patsalas, S. Logothetidis, L. Sygellou and S. Kennou, Physical Review B, Vol. 68, pp. 035104 (2003).
[22] M. Sugiura, Catalysis Surveys from Asia, Vol. 7, pp. 77 (2003).
[23] Y. Liu, Z. Lockman, A. Aziz and J. MacManus-Driscoll, Journal of Physics: Condensed Matter, Vol. 20, pp. 165201 (2008).
[24] X. Chen, G . Li, Y. Su, X. Qiu, L. Li and Z. Zou, Nanotechnology, Vol. 20, pp. 115606 (2009).
[25] Soshin Chikazumi 著,張煦、李學養譯,“磁性物理學”,聯經出版社,(1982).
[26] JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 16 (2005) 555– 597
[27] Dietl, Semiconductor Science and Technology, Vol. 17, pp. 377 (2002).
[28] Nguyen Hoa Hong, Joe Sakai, Antoine Ruyter, and Virginie Brize , Applied Physics Letters , Vol. 89, pp. 252504 (2006).
[29] N. H. Hong, Joe Sakai, Nathalie Poirot and Virginie Brize, Physical Review B, Vol. 73, pp. 132404 (2006).
[30] A. Sundaresan, R. Bhargavi, N. Rangarajan , Physical Review B , Vol. 74, pp. 161306 (2006).
[31] M. Radović,Z. Dohčević-Mitrović, N. Paunović, M. Šćepanović, B. Matović and Z.V. Popović, Acta Physica Polonica A, Vol. 116, pp. 84 (2009).
[32] N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, and F. Gervais, Physical Review B, Vol. 70, pp. 195204 (2004).
[33] R. K. Singhal, P. Kumari, A Samariya, Sudhsih Kumar, S. C. Sharma, Y. T. Xing, Elisa B. Saitiovitch, APPLIED PHYSICS LETTER , Vol 97,pp. 172503 (2010)
[34] Qi-Ye Wen, Huai-Wu Zhang, Qing-Hui Yang, Yuan-Qiang Song, and John Q. Xiao, Journal of Physics: Condensed Matter 19, pp.246205 (2007)
[35] M. Chandra Dimri, H Khanduri, H. Kooskora, J.Subbi,I. Heinmaa, A Mere, J. Krustok , Physica. Status Solidi A, Vol 209,pp. 353-358 (2012)
[36] 郭光揚,二氧化鈦薄膜室溫鐵磁性來源之研究,國立成功大學物理研究所碩士論文,(2007).
[37] J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nature Materials, Vol. 4, pp. 173 (2005).
[38] C. Zener, Physical Review B,Vol. 81, pp.440 (1951).
[39] 蔡政宏,磊晶氧化鋅共摻雜鈷、鋁之稀磁性半導體磁性來源的研究,國立成功大學物理研究所碩士論文
[40] Ponnusamy Nachimuthu, Wen-Chen Shih, Ru-Shi Liu, Ling-Yun Jang, Jin-Ming Chen, Journal of Solid State Chemistry, Vol. 149, pp. 408-413 (2000).
[41] 黃鎮江, “燃料電池”, 全華科技圖書股份有限公司 (2003)
[42] Appleby A. J. and Foulkers F. R., “Fuel cell technology hand book” ,Van Nostrand Reinhold (1989)
[43] Gregor H., “Fuel cell technology hand book”, CRC Press (2002)
[44] Minh N. Q..and Takahashi T “Science and Technology of Ceramic Fuel Cells”, Elsevier Science B. V. (1995)
[45] Stefan Torbru‥gge* and Michael Reichling , Fachbereich Physik, Universita‥t Osnabru‥ck, Barbarastrase 7, 49076 Osnabru‥ck, Germany, PRL 99, 056101 (2007).
[46] Brian C. H. Steele, Angelika Heinzel,NATURE,Vol.414,pp.345(2001)
[47] J. Hormes,M. Pantelouris,G.B. B Balazs,B.Rambabu,Vol.136, pp. 945 (2000
[48] X-Ray Absorption : Principles, Application, Techniques of EXAFS,
SEXAFS, SEXAFS and XANES" , edited by D. C. Koningsberger,
and R. Prins, Chem. Analysis, Vol.92 (Wiley 1988).
[49] D. E. Sayers, E. A. Stern, and F. W. Lytle, Physical Review Letter, Vol.27, pp. 1024 (1971).
[50] 安全訓練手冊,新竹國家同步輻射研究中心
[51] 同步輻射網站 http://www.srrc.gov.tw/
[52] Boon K. Teo ,EXAFS , Basic Principle and Data Analysis, (Springer-Verlag, Berlin, 1986).
[53] Boon K. Teo, EXAFS:Basic Principle and Data Analysis, Springer-
Verlag, New York (1986).
[54] 葉承霖,由 X 光吸收光譜探討以 Fe 當催化層奈米碳管之電子結構,私立淡江大學物理學系研究所碩士論文,(2000)
[55] "EXAFS and Near edge Structure", edited by A. Bianconi, L.
Incoccia and S. Stipcich (Springer-Verlay 1983).
[56] “EXAFS , Basic Principle and Data Analysis”, edited by Boon K.Teo (Springer-Verlag 1986).

[57] D. E. Sayers, E. A. Stern, and F. W. Lytle, Physical Review Letter, Vol.27, pp. 1024 (1971).
[58] http://www-ssrl.slac.standford.edu/stohr/xmcd.htm
[59] L.A.J. Garvie,P.R. Buseck,Journal of Physics and Chemistry of Solids,Vol.60, pp.1943(1999)
[60] C. F.J. Flipse, G.van der.Laan, A. L. Johnson,K. Kadowaki, Physical Review B,Vol.42, pp.4(1990)
[61] Ponnusamy Nachimuthu, Wen-Chen Shih, Ru-Shi Liu, Ling-Yun Jang, Jin-Ming Chen, Journal of Solid State Chemistry, Vol. 149, pp. 408 (2000).
[62] Shih-Yun Chen, Chi-Hang Tsai, Mei-Zi Huang, Der-Chung Yan, Tzu-Wen Huang, Alexandre Gloter, Chi-Liang Chen, and Chung-Li Dong, The Journal of Physical Chemistry C, Vol.116,pp.8707(2012)
[63] Charles T. Campbell and Charles H. F. Peden, Science, Vol.309,pp.713
[64] Ming Guo, Jiqing Lu, Yanni Wu, Yuejuan Wang, and Mengfei Luo, Langmuir,Vol.27,pp.3872(2011)

QR CODE